1
|
Liu Y, Li J, Xu J, Long Y, Wang Y, Liu X, Hu J, Wei Q, Luo Q, Luo F, Qin F, Yi Q, Yang Y, Dang Y, Xu J, Liu T, Yi P. m 6A-driven NAT10 translation facilitates fatty acid metabolic rewiring to suppress ferroptosis and promote ovarian tumorigenesis through enhancing ACOT7 mRNA acetylation. Oncogene 2024:10.1038/s41388-024-03185-z. [PMID: 39390256 DOI: 10.1038/s41388-024-03185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
RNA epigenetic modifications have been implicated in cancer progression. However, the interplay between distinct RNA modifications and its role in cancer metabolism remain largely unexplored. Our study demonstrates that N-acetyltransferase 10 (NAT10) is notably upregulated in ovarian cancer (OC), correlating with poor patient prognosis. IGF2BP1 enhances the translation of NAT10 mRNA in an m6A-dependent manner in OC cells. NAT10 drives tumorigenesis by mediating N4-acetylcytidine (ac4C) modification of ACOT7 mRNA, thereby augmenting its stability and translation. This NAT10-ACOT7 axis modulates fatty acid metabolism in cancer cells and promotes tumor progression by suppressing ferroptosis. Additionally, our research identifies fludarabine as a small molecule inhibitor targeting NAT10, inhibits the ac4C modification and expression of ACOT7 mRNA. By using cell derived xenograft model and patient derived organoid model, we show that fludarabine effectively suppresses ovarian tumorigenesis. Overall, our study highlights the pivotal role of the NAT10-ACOT7 axis in the malignant cancer progression, underscoring the potential of targeting NAT10-mediated ac4C modification as a viable therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Yujiao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Jia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- Department of Gynecology, Guiyang Maternal and Child Health Care Hospital, Guiyang, 561000, Guizhou, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yingfei Long
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qingya Luo
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Fatao Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Fengjiang Qin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- Department of Obstetrics and Gynecology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - Qihua Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
- Department of Gynecology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
2
|
Tang N, Li Y, Tang J, Chen J, Chen L, Dang L. ACOT7 positively regulated by CREB1 promotes the progression of cutaneous melanoma. Acta Histochem 2024; 126:152186. [PMID: 39142244 DOI: 10.1016/j.acthis.2024.152186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Cutaneous melanoma (cM) is a prevalent invasive cancer resulting from the malignant transformation of melanocytes. At present, the primary treatment for melanoma is surgical resection, which is not appropriate for patients with metastasis. Therefore, it is necessary to identify effective therapeutic targets for the early diagnosis and treatment of metastatic melanoma. Acyl-CoA thioesterase 7 (ACOT7) has been reported to be involved in the progression of multiple cancer, while its role in melanoma has not been extensively researched. Through gain-of-function and loss-of-function experiments, ACOT7 was identified as a tumor promoter that facilitates the progression of melanoma cells. Cell proliferation was promoted by overexpressing ACOT7 in M14 cells, and was suppressed by silencing ACOT7 in MeWo cells. Knockdown of ACOT7 induced cell cycle arrest by increasing the expressions of cyclin dependent kinase inhibitor 1B (P27) and cyclin dependent kinase inhibitor 1 A (P21), while simultaneously reducing proliferating cell nuclear antigen (PCNA) expression. Upregulation of ACOT7 promoted the cell cycle of melanoma cells. Additionally, apoptosis was induced by the absence of ACOT7 through activating caspase-3 and poly (ADP-ribose) polymerase (PARP). The metastatic and invasive capacity of melanoma cells was significantly enhanced by the overexpression of ACOT7 and inhibited by the downregulation of ACOT7. Moreover, the cAMP responsive element binding protein 1 (CREB1) positively regulates ACOT7 expression by binding to its promoter region. A decrease of cell proliferation, migration and invasion, as well as an increase of cell apoptosis induced by silencing CREB1 were obviously reversed by ACOT7. In summary, ACOT7 transcriptionally activated by CREB1 elevates the progression of cM.
Collapse
Affiliation(s)
- Ni Tang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Yunhui Li
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Junchi Tang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Juexin Chen
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Lili Chen
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China
| | - Lin Dang
- Department of Dermatology, Longgang Central Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Bai L, Yang P, Han B, Kong L. Progress of the acyl-Coenzyme A thioester hydrolase family in cancer. Front Oncol 2024; 14:1374094. [PMID: 38562172 PMCID: PMC10982514 DOI: 10.3389/fonc.2024.1374094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, the acyl-Coenzyme A thioester hydrolase family (ACOTs) has received wide attention as a key link in lipid metabolism. This family is a class of enzymes that catalyze the hydrolysis of fatty acyl-Coenzyme A, disrupting the thioester bond present within acyl-CoA ester molecules to produce free fatty acids (FFA) and the corresponding coenzyme A (CoA). Such enzymes play a very important role in lipid metabolism through maintaining appropriate levels of intracellular FFA and fatty acyl-CoA as well as CoA. It is broadly divided into two distinct subgroups, the type-I α/β-hydrolase fold enzyme superfamily and the type-II 'hot dog' fold superfamily. There are currently four human type-I genes and eight human type-II genes. Although the two subgroups catalyze the same reaction, they are not structurally similar, do not share the same sequence homology, and differ greatly in protein executive functions. This review summarizes the classification of the acyl-CoA thioester hydrolase family, an overview of the structural sequences, and advances in digestive, respiratory, and urinary systemic tumors. In order to explore potential specific drug targets and effective interventions, to provide new strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Lu Bai
- Inner Mongolia Medical University, Hohhot, China
- Department of Pathology, Peking University Cancer Hospital & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Pengjie Yang
- Thoracic Surgery Department, Peking University Cancer Hospital & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Bater Han
- Thoracic Surgery Department, Peking University Cancer Hospital & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Linghui Kong
- Department of Pathology, Peking University Cancer Hospital & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
4
|
Li C, Dong K, Zhuang Y, Luo Z, Qiu D, Luo Y, Li J, Xing D, Ma M, Wu W, Sun S. ACOT7 promotes retinoblastoma resistance to vincristine by regulating fatty acid metabolism reprogramming. Heliyon 2024; 10:e27156. [PMID: 38463820 PMCID: PMC10920713 DOI: 10.1016/j.heliyon.2024.e27156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
The rate of vincristine (VCR) resistance in the treatment of retinoblastoma (RB) is relatively high, and the exact role and mechanism of autophagy and fatty acid (FA) metabolism in RB are still unknown. The aim of this study was to elucidate the molecular mechanism by which acyl-CoA thioesterase 7 (ACOT7) regulates FA metabolism and autophagy, which may lead to potential therapeutic strategies for RB. In the present study, the relationship between FA metabolism and cellular drug sensitivity was evaluated through ACOT7 overexpression or inhibition tests in RB-resistant cells. The lipase inhibitor orlistat and the autophagy inhibitor CQ were used to determine the effects of ACOT7 on FA metabolism, autophagy, and cellular drug sensitivity, as well as the therapeutic value of ACOT7 targeting. The results showed that ACOT7 was upregulated in VCR-resistant RB cells, significantly enhancing cell resistance and indicating that ACOT7 may serve as a biomarker for VCR resistance in RB cells. Knockdown of ACOT7 inhibited FA metabolism and reduced cell viability in VCR-resistant RB cells. The effect of ACOT7 overexpression was opposite to that of ACOT7 knockdown, and ACOT7 overexpression promoted autophagy in VCR-resistant RB cells. After treatment with orlistat or CQ, FA metabolism in VCR-resistant RB cells decreased, cell viability and autophagy were inhibited, EMT was inhibited, and the sensitivity of RB cells to VCR was increased. In conclusion, ACOT7 knockdown can mediate FA metabolism to inhibit autophagy and the migration of RB cells, thereby improving the sensitivity of RB cells to VCR.
Collapse
Affiliation(s)
- Cairui Li
- Department of Ophthalmology, Dali Prefecture People's Hospital (The Third Affiliated Hospital of Dali University), Dali, Yunnan province, 671003, China
| | - Kaiye Dong
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Yanmei Zhuang
- Department of Ophthalmology, Weishan County People's Hospital, Dali, Weishan, Yunnan province, 672400, China
| | - Zhaokui Luo
- Department of Ophthalmology, Jingdong Yi Autonomous County Hospital of Traditional Chinese Medicine, Yunnan province, 665700, China
| | - Dong Qiu
- Department of Ophthalmology, Dali Optometry Ophthalmic Hospital, Dali, Yunnan province, 671003, China
| | - Yingjie Luo
- Department of Ophthalmology, Dali University, Dali, Yunnan province, 665700, China
| | - Juan Li
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Dongxia Xing
- Department of Ophthalmology, Dali Optometry Ophthalmic Hospital, Dali, Yunnan province, 671003, China
| | - Maicong Ma
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Weigang Wu
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| | - Shuguang Sun
- Department of Endocrine, The First Affiliated Hospital of Dali University, Dali, Yunnan province, 671003, China
| |
Collapse
|
5
|
Simmen FA, Alhallak I, Simmen RCM. Krüppel-like Factor-9 and Krüppel-like Factor-13: Highly Related, Multi-Functional, Transcriptional Repressors and Activators of Oncogenesis. Cancers (Basel) 2023; 15:5667. [PMID: 38067370 PMCID: PMC10705314 DOI: 10.3390/cancers15235667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024] Open
Abstract
Specificity Proteins/Krüppel-like Factors (SP/KLF family) are a conserved family of transcriptional regulators. These proteins share three highly conserved, contiguous zinc fingers in their carboxy-terminus, requisite for binding to cis elements in DNA. Each SP/KLF protein has unique primary sequence within its amino-terminal and carboxy-terminal regions, and it is these regions which interact with co-activators, co-repressors, and chromatin-modifying proteins to support the transcriptional activation and repression of target genes. Krüppel-like Factor 9 (KLF9) and Krüppel-like Factor 13 (KLF13) are two of the smallest members of the SP/KLF family, are paralogous, emerged early in metazoan evolution, and are highly conserved. Paradoxically, while most similar in primary sequence, KLF9 and KLF13 display many distinct roles in target cells. In this article, we summarize the work that has identified the roles of KLF9 (and to a lesser degree KLF13) in tumor suppression or promotion via unique effects on differentiation, pro- and anti-inflammatory pathways, oxidative stress, and tumor immune cell infiltration. We also highlight the great diversity of miRNAs, lncRNAs, and circular RNAs which provide mechanisms for the ubiquitous tumor-specific suppression of KLF9 mRNA and protein. Elucidation of KLF9 and KLF13 in cancer biology is likely to provide new inroads to the understanding of oncogenesis and its prevention and treatments.
Collapse
Affiliation(s)
- Frank A. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Iad Alhallak
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
| | - Rosalia C. M. Simmen
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (I.A.); (R.C.M.S.)
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Liu Y, Song Y, He Y, Kong Z, Li H, Zhu Y, Liu S. Kruppel-like factor 13 acts as a tumor suppressor in thyroid carcinoma by downregulating IFIT1. Biol Direct 2023; 18:65. [PMID: 37817224 PMCID: PMC10565980 DOI: 10.1186/s13062-023-00422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Kruppel-like factor 13 (KLF13) is a transcription factor and plays an important role in carcinogenesis. However, the significance of KLF13 in thyroid carcinoma (THCA) is underdetermined. In this study, we aimed to explore the clinical relevance and function of KLF13 in the progress of THCA. METHODS The expression of KLF13 in thyroid carcinoma and normal tissue was investigated by qPCR and IHC assay. The expression of KLF13 and IFIT1 in cell samples was investigated with Western blot assay. Cell proliferation ability was detected with CCK8 and colony formation assay. Cell growth in vivo with or without KLF13 overexpression was evaluated on a xenograft model. Cell migration ability was measured with Transwell assay. Cell cycle was detected with flow cytometer. The downstream genes of KLF13 were screened using RNA-seq assay. Luciferase activity was employed to assess the transcriptional regulation of KLF13 on IFIT1 promoter. RESULTS KLF13 expression was downregulated in THCA samples. KLF13 knockdown and overexpression promoted and inhibited the proliferation and migration of THCA cells, respectively. The RNA-seq, RT-qPCR and immunoblotting data showed that KLF13 knockdown significantly potentiated IFIT1 expression at both mRNA and protein levels. Luciferase assays showed that KLF13 suppressed the transcription activity of IFIT1 promoter. Besides, IFIT1 upregulation was critical for the proliferation and migration of THCA cell lines. Lastly, silencing of IFIT1 greatly reversed the proliferation and migration induced by KLF13 knockdown. CONCLUSIONS In conclusion, KLF13 may function as an anti-tumor protein in THCA by regulating the expression of IFIT1 and offer a theoretical foundation for treating thyroid carcinoma.
Collapse
Affiliation(s)
- Yang Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yixuan Song
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yuqin He
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Ziren Kong
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Han Li
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yiming Zhu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
| | - Shaoyan Liu
- Department of Head and Neck Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
7
|
Zhu H, Lin Y, Lu D, Wang S, Liu Y, Dong L, Meng Q, Gao J, Wang Y, Song N, Suo Y, Ding L, Wang P, Zhang B, Gao D, Fan J, Gao Q, Zhou H. Proteomics of adjacent-to-tumor samples uncovers clinically relevant biological events in hepatocellular carcinoma. Natl Sci Rev 2023; 10:nwad167. [PMID: 37575948 PMCID: PMC10416816 DOI: 10.1093/nsr/nwad167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/10/2023] [Accepted: 06/01/2023] [Indexed: 08/15/2023] Open
Abstract
Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.
Collapse
Affiliation(s)
- Hongwen Zhu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Dayun Lu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shisheng Wang
- Institutes for Systems Genetics and NHC Key Lab of Transplant Engineering and Immunology, Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuejia Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liangqing Dong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Qian Meng
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqiu Wang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Nixue Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuying Suo
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Siteman Cancer Center, Washington University, St. Louis, MI 63108, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NewYork, NY 10029, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Daming Gao
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang T, Wang K, Zhu X, Chen N. ARNTL2 upregulation of ACOT7 promotes NSCLC cell proliferation through inhibition of apoptosis and ferroptosis. BMC Mol Cell Biol 2023; 24:14. [PMID: 37003979 PMCID: PMC10064581 DOI: 10.1186/s12860-022-00450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/05/2022] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Recent studies have reported that the circadian transcription factor aryl hydrocarbon receptor nuclear translocator like 2 (ARNTL2) promotes the metastatic progression of lung adenocarcinoma. However, the molecular mechanisms of ARNTL2 in non-small cell lung cancer (NSCLC) cell growth and proliferation remain to be explored. METHODS The expression of ARNTL2 and acyl-CoA thioesterase 7 (ACOT7) in lung cancer patients was analyzed based on TCGA database. Gain-of-function of ARNTL2 and ACOT7 was conducted by transfecting the cells with plasmids or lentivirus. Knockdown assay was carried out by siRNAs. Western blot and qRT-PCR were performed to check the protein and mRNA expression. Dual luciferase and ChIP-qPCR assay was applied to check the interaction of ARNTL2 on ACOT7's promoter sequence. Triglyceride level, MDA production, the activity of casapase 3 to caspase 7, and lipid ROS were measured by indicated assay kit. Cellular function was detected by CCK8, colony formation and flow cytometry analysis of cell death and cell cycle. RESULTS We demonstrated that ARNTL2 upregulation of ACOT7 was critical for NSCLC cell growth and proliferation. Firstly, overexpression of ARNTL2 conferred the poor prognosis of LUAD patients and supported the proliferation of NSCLC cells. Based on molecular experiments, we showed that ARNTL2 potentiated the transcription activity of ACOT7 gene via direct binding to ACOT7's promoter sequence. ACOT7 high expression was correlated with the worse prognosis of LUAD patients. Gain-of-function and loss-of-function experiments revealed that AOCT7 contributed to NSCLC cell growth and proliferation. ACOT7 regulated the apoptosis and ferroptosis of NSCLC cells, while exhibited no effect on cell cycle progression. ACOT7 overexpression also potentiated fatty acid synthesis and suppressed lipid peroxidation. Lastly, we showed that ARNTL2 knockdown and overexpression inhibited and promoted the cellular triglyceride production and subsequent cell proliferation, which could be reversed by ACOT7 overexpression and knockdown. CONCLUSION Our study illustrated the oncogenic function of ARNTL2/ACOT7 axis in the development of NSCLC. Targeting ARNTL2 or ACOT7 might be promising therapeutic strategies for NSCLC patients with highly expressed ARNTL2.
Collapse
Affiliation(s)
- Tao Wang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kai Wang
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Zhu
- Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Nan Chen
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.
| |
Collapse
|
9
|
Tong M, Zhang Q, Zhang Y, Xing L, Bi K, Li Q. A convenient and efficient 4-(diethylamino)-butylamine-labeled polarity-response-homodispersed strategy for absolute quantification of carboxyl submetabolome: Monitoring the whole progressive course of hepatocellular carcinoma. J Chromatogr A 2022; 1683:463504. [DOI: 10.1016/j.chroma.2022.463504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
|
10
|
Zheng C, Zhang G, Xie K, Diao Y, Luo C, Wang Y, Shen Y, Xue Q. Pan-Cancer Analysis and Experimental Validation Identify ACOT7 as a Novel Oncogene and Potential Therapeutic Target in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14184522. [PMID: 36139682 PMCID: PMC9497106 DOI: 10.3390/cancers14184522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Acyl-CoA thioesterase 7 (ACOT7) is of great significance in regulating cell cycle, cell proliferation, and glucose metabolism. The function of ACOT7 in pan-cancer and its capacity as a prognostic indicator in lung adenocarcinoma (LUAD) remains unknown. We intended to perform a comprehensive pan-cancer analysis of ACOT7 and to validate its value in LUAD. Methods: The expression levels, prognostic significance, molecular function, signaling pathways, and immune infiltration pattern of ACOT7 in 33 cancers were explored via systematic bioinformatics analysis. Multivariate Cox regression was applied to construct nomograms to predict patients’ prognoses. Moreover, we conducted in vitro experiments including CCK8, scratch, Transwell, and Matrigel assays to further explore the function of ACOT7 in LUAD. Results: Patients with high ACOT7 expression have notably poorer long-term survival in many cancer types, including LUAD. Further enrichment analyses reveal that ACOT7 is involved in immune cells’ infiltration and is substantially related to the cancer−immune microenvironment. ACOT7 could influence drug sensitivities, including afatinib, gefitinib, ibrutinib, lapatinib, osimertinib, sapitinib, taselisib, and PLX-4720 (all p < 0.01). A nomogram demonstrated a fair predictive value of ACOT7 in LUAD (C-index: 0.613, 95% CI: 0.568−0.658). The proliferation and migration of PC9 cells were significantly repressed when ACOT7 expression was downregulated. Conclusion: As an oncogene, ACOT7 is critical in the tumor microenvironment of pan-cancer and might be a novel therapeutic target for LUAD.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Kai Xie
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210009, China
| | - Yifei Diao
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210009, China
| | - Chao Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanqing Wang
- Department of Cardiology, Jinling Hospital, Nanjing University, Nanjing 210009, China
- Correspondence: (Y.W.); (Q.X.)
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (Y.W.); (Q.X.)
| |
Collapse
|
11
|
SP and KLF Transcription Factors in Cancer Metabolism. Int J Mol Sci 2022; 23:ijms23179956. [PMID: 36077352 PMCID: PMC9456310 DOI: 10.3390/ijms23179956] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor development and progression depend on reprogramming of signaling pathways that regulate cell metabolism. Alterations to various metabolic pathways such as glycolysis, oxidative phosphorylation, lipid metabolism, and hexosamine biosynthesis pathway are crucial to sustain increased redox, bioenergetic, and biosynthesis demands of a tumor cell. Transcription factors (oncogenes and tumor suppressors) play crucial roles in modulating these alterations, and their functions are tethered to major metabolic pathways under homeostatic conditions and disease initiation and advancement. Specificity proteins (SPs) and Krüppel-like factors (KLFs) are closely related transcription factors characterized by three highly conserved zinc fingers domains that interact with DNA. Studies have demonstrated that SP and KLF transcription factors are expressed in various tissues and regulate diverse processes such as proliferation, differentiation, apoptosis, inflammation, and tumorigenesis. This review highlights the role of SP and KLF transcription factors in the metabolism of various cancers and their impact on tumorigenesis. A better understanding of the role and underlying mechanisms governing the metabolic changes during tumorigenesis could provide new therapeutic opportunities for cancer treatment.
Collapse
|
12
|
Chen L, Yang CS, Chen SD, Zhou QX, Wang GQ, Cai SL, Li WH, Luo HZ. Multi-omics characterization of the unsaturated fatty acid biosynthesis pathway in colon cancer. Am J Cancer Res 2022; 12:3985-4000. [PMID: 36119831 PMCID: PMC9442000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023] Open
Abstract
The biosynthesis of unsaturated fatty acids is involved in the initiation and progression of colon adenocarcinoma (COAD). In this study, we aimed to investigate the multi-omics characteristics of unsaturated fatty acid biosynthesis-related genes and explore their prognostic value in colon cancer by analyzing the data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. An unsaturated fatty acid biosynthesis pathway related-genes enrichment score (BUFAS) was constructed utilizing the single sample gene set enrichment analysis (ssGSEA). We discovered that a high BUFAS was associated with longer overall survival (OS) in both the training and the validation sets. Multivariable analysis including the clinical characteristics further verified the independent prognostic value of the BUFAS in both the TCGA-COAD and the GSE39582 datasets. In addition, GSEA analysis revealed that BUFAS was positively associated with several signaling pathways, including MTORC1, peroxisome, and pathways related to fatty acid metabolism, while was negatively associated with other signaling pathways, such as hedgehog, NOTCH, and Wnt/beta-catenin pathway. Furthermore, in the COAD cell lines of the Genomics of Drug Sensitivity in Cancer (GDSC) database, we found that BUFAS was positively correlated with the drug sensitivities of cisplatin, gemcitabine, camptothecin, lapatinib, and afatinib, while was negatively correlated with that of ponatinib. Moreover, in the COAD single-cell transcriptomic dataset (GSE146771), the BUFAS varied among different cell types and was enriched in mast cells and fibroblasts. Taken together, the BUFAS we constructed could be used as an independent prognostic signature in predicting the OS and drug resistance of colon cancer. Unsaturated fatty acid biosynthesis pathway might serve as potential therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Ling Chen
- Department of Gastrointestinal Surgery, Xiangya HospitalNo. 87 Xiangya Road, Changsha, Hunan, China
| | - Chang-Shun Yang
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical UniversityNo. 134 East Street, Fuzhou, Fujian, China
| | - Si-Dong Chen
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Qiao-Xia Zhou
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Guo-Qiang Wang
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Shang-Li Cai
- Burning Rock Biotech, Building 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou, Guangdong, China
| | - Wei-Hua Li
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical UniversityNo. 134 East Street, Fuzhou, Fujian, China
| | - Hong-Zhi Luo
- Department of Tumor Surgery, Zhongshan City People’s HospitalNo. 2 Sunwen Middle Road, Zhongshan, Guangdong, China
| |
Collapse
|
13
|
Gao Y, Li K, Zhang L, Chen C, Bai C. A Nucleophilic Chemical Probe Targeting Electrophilic Functional Groups in an Untargeted Way to Explore Cysteine Modulators in Natural Products. ACS Chem Biol 2022; 17:1685-1690. [PMID: 35766822 DOI: 10.1021/acschembio.2c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The vital roles of biologically relevant cysteines have been discovered from proteins that are promising targets for new drugs or chemical tools. Therefore, new electrophilic small molecules that can covalently modulate these cysteines have attracted immense interest. Because of their extremely wide chemical diversity, electrophilic natural products (NPs) have been studied as promising sources of cysteine modulators. Previous studies have developed chemical probes to facilitate the detection and isolation of electrophilic NPs. To address the problems with the current methods, including their low sensitivity, high false-positive rate, and dependence on performing manual processing with a plethora of spectra, we report a chemical probe that can first covalently capture electrophilic NPs from natural resources and then produce sensitive reporter ion signals that are specific for the detected NPs. We applied this untargeted method to explore electrophilic NPs from natural resources and found that the complexity of electrophilic NPs was beyond our expectations. We used this chemical probe to identify a new electrophilic furanosesterterpene (BG-1) from an extract of Ginkgo biloba that targets the Cys207 of acyl-CoA thioesterase 7 (ACOT7).
Collapse
Affiliation(s)
- Yinyi Gao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510130, China
| | - Kaili Li
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lijun Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan 610041, China
| | - Chuan Bai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|