Bi M, Tian Z. High-throughput N-glycoproteomics with fast liquid chromatographic separation.
Anal Chim Acta 2024;
1288:342129. [PMID:
38220271 DOI:
10.1016/j.aca.2023.342129]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
N-glycosylation is a common protein post translation modification, which has tremendous structure diversity and wide yet delicate regulation of protein structures and functions. Mass spectrometry-based N-glycoproteomics has become a state-of-the-art pipeline for both qualitative and quantitative characterization of N-glycosylation at the intact N-glycopeptide level, providing comprehensive information of peptide backbones, N-glycosites, monosaccharide compositions, sequence and linkage structures. For high-throughput analysis of large-cohort clinic samples, fast and high-performance separation is indispensable. Here we report our development of 1-h liquid chromatography gradient N-glycoproteomics method and accordingly optimized MS parameters. In the benchmark analysis of cancer and paracancerous tissue of hepatocellular carcinoma, 5,218 intact N-glycopeptides were identified, where 422 site- and structure-specific differential N-glycosylation on 145 N-glycoproteins was observed. The method, representing substantial increase of throughput, can be adopted for fast and efficient analysis of N-glycoproteomes at large scale.
Collapse