1
|
Yu X, Yang B, Chen B, Wu Q, Ren Z, Wang D, Yuan T, Ding H, Ding C, Liu Y, Zhang L, Sun Z, Zhao J. Inhibitory effects of Formononetin on CoCrMo particle-induced osteoclast activation and bone loss through downregulating NF-κB and MAPK signaling. Cell Signal 2023; 106:110651. [PMID: 36894124 DOI: 10.1016/j.cellsig.2023.110651] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
Wear particle-induced osteoclast over-activation is a major contributor to periprosthetic osteolysis and aseptic loosening, which can cause pathological bone loss and destruction. Hence, inhibiting excessive osteoclast-resorbing activity is an important strategy for preventing periprosthetic osteolysis. Formononetin (FMN) has been shown to have protective effects against osteoporosis, but no previous study has evaluated the effects of FMN on wear particle-induced osteolysis. In this study, we found that FMN alleviated CoCrMo alloy particles (CoPs)-induced bone loss in vivo and inhibited the formation and bone-resorptive function of osteoclasts in vitro. Moreover, we revealed that FMN exerted inhibitory effects on the expression of osteoclast-specific genes via the classical NF-κB and MAPK signaling pathways in vitro. Collectively, FMN is a potential therapeutic agent for the prevention and treatment of periprosthetic osteolysis and other osteolytic bone diseases.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Binkui Yang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Qi Wu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Zhengrong Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Dongsheng Wang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Tao Yuan
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Hao Ding
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chao Ding
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710068, China.
| | - Lei Zhang
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China.
| | - Zhongyang Sun
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China; Department of Orthopedics, Air Force Hospital of Eastern Theater, Anhui Medical University, Nanjing 210002, China.
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
2
|
Orthopaedic implant failure: aseptic implant loosening–the contribution and future challenges of mouse models in translational research. Clin Sci (Lond) 2014; 127:277-93. [DOI: 10.1042/cs20130338] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aseptic loosening as a result of wear debris is considered to be the main cause of long-term implant failure in orthopaedic surgery and improved biomaterials for bearing surfaces decreases significantly the release of micrometric wear particles. Increasingly, in-depth knowledge of osteoimmunology highlights the role of nanoparticles and ions released from some of these new bearing couples, opening up a new era in the comprehension of aseptic loosening. Mouse models have been essential in the progress made in the early comprehension of pathophysiology and in testing new therapeutic agents for particle-induced osteolysis. However, despite this encouraging progress, there is still no valid clinical alternative to revision surgery. The present review provides an update of the most commonly used bearing couples, the current concepts regarding particle–cell interactions and the approaches used to study the biology of periprosthetic osteolysis. It also discusses the contribution and future challenges of mouse models for successful translation of the preclinical progress into clinical applications.
Collapse
|
4
|
Yu X, Zhao X, Wu T, Zhou Z, Gao Y, Wang X, Zhang CQ. Inhibiting wear particles-induced osteolysis with naringin. INTERNATIONAL ORTHOPAEDICS 2012; 37:137-43. [PMID: 23111634 DOI: 10.1007/s00264-012-1668-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE The purpose of this study was to determine the effects of naringin on osteoclastogenesis and osteolysis both in vitro and in vivo. METHODS In this research osteoclasts were generated from mouse bone marrow monocytes with the receptor activator of NF-КB ligand and the macrophage colony stimulating factor. Naringin, at a concentration of 1, 10, 50, and 100 μg/mL, was respectively added to the medium. Seven days later, the osteoclasts were determined through tartrate-resistant acid phosphatase (TRAP) staining. Mature osteoclasts were isolated from newborn rabbits and cultured for three days on bone slices. Naringin at a concentration of 1, 10, 50, and 100 μg/mL was respectively added to the medium. The resorption bone slices were quantified, and the area was calculated after toluidine blue and Mayer-hematoxylin staining. Polymethyl methacrylate (PMMA) particles were implanted on the calvariae of C57BL/J6 mice. Naringin, at a dose of 50 μg/kg and 100 μg/kg, was respectively given intraperitoneally for seven. Seven days later, the calvariae were removed and processed for pathological analysis. RESULTS The result indicated that naringin treatment effectively inhibited in vitro osteoclastogenesis and inhibited mature osteoclasts. In vivo data indicated that naringin strongly inhibited PMMA-induced osteolysis. CONCLUSION Naringin can effectively inhibit osteoclastogenesis and suppress wear particles-induced osteolysis and might be useful in the treatment or prevention of wear particles-induced osteolysis and aseptic loosening for its effect on osteoclast generation and function.
Collapse
Affiliation(s)
- Xiaowei Yu
- Department of Orthopaedics, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Beck RT, Illingworth KD, Saleh KJ. Review of periprosthetic osteolysis in total joint arthroplasty: an emphasis on host factors and future directions. J Orthop Res 2012; 30:541-6. [PMID: 21922533 DOI: 10.1002/jor.21554] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/24/2011] [Indexed: 02/04/2023]
Abstract
Periprosthetic osteolysis is one of the leading causes of total joint revision procedures. If allowed to progress in the absence of radiographic diagnosis and/or proper medical treatment, osteolysis may result in aseptic loosening yielding failure of the implant and the need for complex revision arthroplasty. The purpose of this review was to assess the current understanding of periprosthetic osteolysis with an emphasis on host factors and future directions. A PubMed search was conducted using the following key words; osteolysis, periprosthetic osteolysis, osteolysis imaging. Pertinent articles, as it pertained to the outline of the review, were selected. Periprosthetic osteolysis stems from numerous risk factors. Osteolysis host characteristic risk factors include gender, body weight, and genetics. Current implant designs have reduced the incidence of this disease; however no current design has been able to replicate the in vivo characteristics and therefore development of wear particles continues to be seen. Advanced methods of imaging diagnosis are on the rise, however early imaging diagnosis is currently ineffective. Pharmacologic intervention appears to be a logical avenue for medical intervention, but no approved drug therapy to prevent or inhibit periprosthetic osteolysis is currently available. Although the rate of periprosthetic osteolysis seems to be decreasing with advances in implant design and increased knowledge of the biological process of wear particle induced osteolysis, the rapid increase in the total number of total joint arthroplasties over the next two decades means that better ways of detecting and treating periprosthetic osteolysis are greatly needed.
Collapse
Affiliation(s)
- Ryan T Beck
- Division of Orthopaedics and Rehabilitation, Department of Surgery, School of Medicine, Southern Illinois University, Springfield 62794-9679, IL
| | | | | |
Collapse
|