1
|
Green RM, Thompson PR. Current insights into the role of citrullination in thrombosis. Curr Opin Chem Biol 2023; 75:102313. [PMID: 37148643 PMCID: PMC10523988 DOI: 10.1016/j.cbpa.2023.102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023]
Abstract
Protein citrullination is a post-translational modification of arginine that controls a diverse array of cellular processes, including gene regulation, protein stability, and neutrophil extracellular trap (NET) formation. Histone citrullination promotes chromatin decondensation and NET formation, a pro-inflammatory form of cell death that is aberrantly increased in numerous immune disorders. This review will provide insights into NETosis and how this novel form of cell death contributes to inflammatory diseases, with a particular emphasis on its role in thrombosis. We will also discuss recent efforts to develop PAD-specific inhibitors.
Collapse
Affiliation(s)
- R Madison Green
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Paul R Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Sarnik J, Makowska J. Citrullination good or bad guy? Immunobiology 2022; 227:152233. [DOI: 10.1016/j.imbio.2022.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/11/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
|
3
|
Urbanowicz T, Michalak M, Al-Imam A, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Haneya A, Buczkowski P, Perek B, Jemielity M. The Significance of Systemic Immune-Inflammatory Index for Mortality Prediction in Diabetic Patients Treated with Off-Pump Coronary Artery Bypass Surgery. Diagnostics (Basel) 2022; 12:diagnostics12030634. [PMID: 35328187 PMCID: PMC8947274 DOI: 10.3390/diagnostics12030634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) represents a complex carbohydrate metabolism disorder characterized by inflammatory over-reactivity. The study aimed to investigate the potential influence of postoperative inflammatory activation on mortality risk after off-pump coronary artery bypass grafting in diabetic patients. There were 510 patients treated with off-pump coronary artery bypass grafting due to stable complex coronary artery disease, including 175 patients with type-2 DM (T2DM.) The mean follow-up time was 3.7 +/− 1.5 years with a 9% all-cause mortality rate in the diabetic group. In multivariable analysis, preoperative comorbidities (stroke, peripheral artery disease, postoperative systemic inflammatory index >952, and postoperative left ventricle ejection fraction (LVEF) < 45%) were revealed as prognostic factors. The receiver operator characteristics curve analysis for postoperative calculations of systemic immune-inflammatory index (SII) appeared significant (AUC = 0.698, p = 0.008), yielding sensitivity of 68.75% and specificity of 71.07%. Systemic immune-inflammatory index (SII) can be regarded as a predictive marker for long-term prognosis in diabetic patients after off-pump coronary artery bypass grafting. The role of perioperative inflammatory activation may play a crucial role in mortality prediction.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantalogy Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
- Correspondence: ; Tel.: +48-61-854-9210
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-806 Poznan, Poland; (M.M.); (A.A.-I.)
| | - Ahmed Al-Imam
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 61-806 Poznan, Poland; (M.M.); (A.A.-I.)
- Department of Anatomy and Cellular Biology, College of Medicine, University of Baghdad, Baghdad 10047, Iraq
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantalogy Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Michał Rodzki
- Cardiac Surgery and Transplantalogy Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Anna Witkowska
- Cardiac Surgery and Transplantalogy Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Assad Haneya
- Herz and Gefaschirurgie, Universitatklinikum Schleswig-Holstein, 24105 Kiel, Germany;
| | - Piotr Buczkowski
- Cardiac Surgery and Transplantalogy Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantalogy Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantalogy Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland; (A.O.-W.); (M.R.); (A.W.); (P.B.); (B.P.); (M.J.)
| |
Collapse
|
4
|
Mao L, Mostafa R, Ibili E, Fert-Bober J. Role of protein deimination in cardiovascular diseases: potential new avenues for diagnostic and prognostic biomarkers. Expert Rev Proteomics 2021; 18:1059-1071. [PMID: 34929115 DOI: 10.1080/14789450.2021.2018303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arginine deimination (citrullination) is a post-translational modification catalyzed by a family of peptidyl arginine deiminase (PAD) enzymes. Cell-based functional studies and animal models have manifested the key role of PADs in various cardiovascular diseases (CVDs). AREA COVERED This review summarizes the latest developments in the role of PADs in CVD pathogenesis. It focuses on the PAD functions and diverse citrullinated proteins in cardiovascular conditions like deep vein thrombosis, ischemia/reperfusion, and atherosclerosis. Identification of PAD isoforms and citrullinated targets are essential for directing diagnosis and clinical intervention. Finally, anti-citrullinated protein antibodies (ACPAs) are addressed as an independent risk factor for cardiovascular events. A search of PubMed biomedical literature from the past ten years was performed with a combination of the following keywords: PAD/PADI, deimination/citrullination, autoimmune, fibrosis, NET, neutrophil, macrophage, inflammation, inflammasome, cardiovascular, heart disease, myocardial infarction, ischemia, atherosclerosis, thrombosis, and aging. Additional papers from retrieved articles were also considered. EXPERT OPINION PADs are unique family of enzymes that converts peptidyl-arginine to -citrulline in protein permanently. Overexpression or increased activity of PAD has been observed in various CVDs with acute and chronic inflammation as the background. Importantly, far beyond being simply involved in forming neutrophil extracellular traps (NETs), accumulating evidence indicated PAD activation as a trigger for numerous processes, such as transcriptional regulation, endothelial dysfunction, and thrombus formation. In summary, the findings so far have testified the important role of deimination in cardiovascular biology, while more basic and translational studies are essential to further exploration.
Collapse
Affiliation(s)
- Liqun Mao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rowann Mostafa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Esra Ibili
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justyna Fert-Bober
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
5
|
Demeekul K, Sukumolanan P, Bootcha R, Panprom C, Petchdee S. A Cardiac Protection of Germinated Brown Rice During Cardiopulmonary Bypass Surgery and Simulated Myocardial Ischemia. J Inflamm Res 2021; 14:3307-3319. [PMID: 34290516 PMCID: PMC8289443 DOI: 10.2147/jir.s321241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The potential cardio-protective property of germinated brown rice (GBR) has been revealed by ameliorating risk factors related to cardiovascular diseases. This study hypothesized that the combination of GBR and cardioplegic solution could protect the cardiomyocytes exposed to simulated ischemic reperfusion injury in vitro study and preserve cardiac function during cardiopulmonary bypass surgery in animal models. Methods Primary porcine cardiomyocytes were isolated and experimented cell viability against simulated ischemic reperfusion injury. In a cardiac surgical animal model, six pigs were randomly assigned to receive the two types of cardioplegic solution: i) St. Thomas cardioplegic solution (20 cc/kg); and ii) St. Thomas cardioplegic solution plus GBR (1 mg/kg). During open-heart surgery, the aorta was cross-clamped for 20 minutes, followed by reperfusion for 1 hour. Cardiopulmonary bypass parameters were recorded until the end of the procedure. Furthermore, hemodynamic parameters and arterial blood gas characteristics of animals among groups were monitored at different time points, including baseline before cardiopulmonary bypass (T1), during cardiopulmonary bypass (T2), during aortic clamp on (T3), and aortic clamp off (T4). Results Primarily, GBR cotreatment with cardioplegic solution essentially resulted in the improvement of cell viability in primary porcine cardiomyocytes against simulated ischemic reperfusion induction. The findings from cardiac surgery demonstrated that mean arterial pressure and heart rate are constantly stable in cardioplegic solution combined with the GBR group, while the trend of potassium and lactase concentration was decreased in the animals receiving GBR group. Consistently, all parameters from arterial blood gas showed better outcomes in animals receiving GBR; however, there were no statistically significant differences between groups, except hepatic enzymes. Conclusion Therefore, GBR might exert cardio-protective effects against ischemic reperfusion injury in the porcine cardiac surgery model due to anti-inflammatory response. These protective actions of GBR may explain the benefits gained from applying GBR products as a possible therapeutic supplement on cardiac diseases.
Collapse
Affiliation(s)
- Kanokwan Demeekul
- Graduate School, Program of Bio-Veterinary Science, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Pratch Sukumolanan
- Veterinary Clinical Study Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Ratikorn Bootcha
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Chattida Panprom
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, KamphaengSaen Campus, Kamphaeng Saen, Thailand
| |
Collapse
|
6
|
Kuyl EV, Shu F, Sosa BR, Lopez JD, Qin D, Pannellini T, Ivashkiv LB, Greenblatt MB, Bostrom MPG, Yang X. Inhibition of PAD4 mediated neutrophil extracellular traps prevents fibrotic osseointegration failure in a tibial implant murine model : an animal study. Bone Joint J 2021; 103-B:135-144. [PMID: 34192911 DOI: 10.1302/0301-620x.103b7.bjj-2020-2483.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system's response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue. METHODS Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure. RESULTS NETs biomarkers were identified in peri-implant fibrotic tissue collected from aseptic loosening patients and at the bone-implant interface in a murine model of osseointegration failure. Inhibition (Pad4-/- ) or resolution (DNase 1) of NETs improved osseointegration and reduced fibrotic tissue despite loose implant conditions in mice. CONCLUSION This study identifies a biological target (NETs) for potential noninvasive treatments of aseptic loosening by discovering a novel connection between the innate immune system and post-injury bone remodelling caused by implant loosening. By inhibiting or resolving NETs in an osseointegration failure murine model, fibrotic tissue encapsulation around an implant is reduced and osseointegration is enhanced, despite loose implant conditions. Cite this article: Bone Joint J 2021;103-B(7 Supple B):135-144.
Collapse
Affiliation(s)
- Emile-Victor Kuyl
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Fei Shu
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Branden R Sosa
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - Juan D Lopez
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - Di Qin
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tania Pannellini
- Research Institute and Precision Medicine Laboratory, Hospital for Special Surgery, New York, New York, USA
| | - Lionel B Ivashkiv
- Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA.,Research Institute, Hospital for Special Surgery, New York, New York, USA
| | - Mathias P G Bostrom
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA.,Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, USA
| | - Xu Yang
- Arthroplasty Research Laboratory, Research Institute, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
7
|
Current knowledge into the role of the peptidylarginine deiminase (PAD) enzyme family in cardiovascular disease. Eur J Pharmacol 2020; 891:173765. [PMID: 33249073 DOI: 10.1016/j.ejphar.2020.173765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022]
Abstract
Peptidylarginine deiminase (PAD) family members have a vital role in maintaining the stability of the extracellular matrix (ECM) during remodelling in several heart diseases. PAD-mediated deamination, or citrullination, has been studied in different physiological and pathological conditions in the body. However, the role of PAD isoforms has not been fully studied in cardiovascular system. Citrullination is a post-translational modification that involves conversion of peptidyl-based arginine to peptidyl-based citrulline by PAD family members in a calcium-dependent manner. Upregulation of PADs have been observed in various cardiovascular diseases, including venous thrombosis, cardiac fibrosis, heart failure, atherosclerosis, coronary heart disease and acute inflammation. In this review, experimental aspects of in vivo and in vitro studies related to the roles PAD isoforms in cardiovascular diseases including mechanisms, pathophysiological and therapeutic properties are discussed. Pharmacological strategies for targeting PAD family proteins in cardiac diseases have not yet been studied. Furthermore, the role played by PAD family members in the remodelling process during the progression of cardiovascular diseases is not fully understood.
Collapse
|
8
|
Tian Y, Qu S, Alam HB, Williams AM, Wu Z, Deng Q, Pan B, Zhou J, Liu B, Duan X, Ma J, Mondal S, Thompson PR, Stringer KA, Standiford TJ, Li Y. Peptidylarginine deiminase 2 has potential as both a biomarker and therapeutic target of sepsis. JCI Insight 2020; 5:138873. [PMID: 33055424 PMCID: PMC7605547 DOI: 10.1172/jci.insight.138873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are a family of calcium-dependent enzymes that are involved in a variety of human disorders, including cancer and autoimmune diseases. Although targeting PAD4 has shown no benefit in sepsis, the role of PAD2 remains unknown. Here, we report that PAD2 is engaged in sepsis and sepsis-induced acute lung injury in both human patients and mice. Pad2–/– or selective inhibition of PAD2 by a small molecule inhibitor increased survival and improved overall outcomes in mouse models of sepsis. Pad2 deficiency decreased neutrophil extracellular trap (NET) formation. Importantly, Pad2 deficiency inhibited Caspase-11–dependent pyroptosis in vivo and in vitro. Suppression of PAD2 expression reduced inflammation and increased macrophage bactericidal activity. In contrast to Pad2–/–, Pad4 deficiency enhanced activation of Caspase-11–dependent pyroptosis in BM-derived macrophages and displayed no survival improvement in a mouse sepsis model. Collectively, our findings highlight the potential of PAD2 as an indicative marker and therapeutic target for sepsis. Peptidylarginine deiminases 2 (PAD2) regulates neutrophil extracellular trap (NET) formation in sepsis and sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Yuzi Tian
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Shibin Qu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Hepatobiliary Surgery, Xijing Hospital, Xian, Shanxi, China
| | - Hasan B Alam
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Aaron M Williams
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Zhenyu Wu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA.,Department of Infectious Disease, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiufang Deng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Baihong Pan
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jing Zhou
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA.,Trauma Center, Department of Orthopedic and Traumatology, Peking University People's Hospital, Beijing, China
| | - Baoling Liu
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Xiuzhen Duan
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yongqing Li
- Department of Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Native/citrullinated LL37-specific T-cells help autoantibody production in Systemic Lupus Erythematosus. Sci Rep 2020; 10:5851. [PMID: 32245990 PMCID: PMC7125190 DOI: 10.1038/s41598-020-62480-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
LL37 exerts a dual pathogenic role in psoriasis. Bound to self-DNA/RNA, LL37 licenses autoreactivity by stimulating plasmacytoid dendritic cells-(pDCs)-Type I interferon (IFN-I) and acts as autoantigen for pathogenic Th17-cells. In systemic lupus erythematosus (SLE), LL37 also triggers IFN-I in pDCs and is target of pathogenic autoantibodies. However, whether LL37 activates T-cells in SLE and how the latter differ from psoriasis LL37-specific T-cells is unknown. Here we found that 45% SLE patients had circulating T-cells strongly responding to LL37, which correlate with anti-LL37 antibodies/disease activity. In contrast to psoriatic Th17-cells, these LL37-specific SLE T-cells displayed a T-follicular helper-(TFH)-like phenotype, with CXCR5/Bcl-6 and IL-21 expression, implicating a role in stimulation of pathogenic autoantibodies. Accordingly, SLE LL37-specific T-cells promoted B-cell secretion of pathogenic anti-LL37 antibodies in vitro. Importantly, we identified abundant citrullinated LL37 (cit-LL37) in SLE tissues (skin and kidney) and observed very pronounced reactivity of LL37-specific SLE T-cells to cit-LL37, compared to native-LL37, which was much more occasional in psoriasis. Thus, in SLE, we identified LL37-specific T-cells with a distinct functional specialization and antigenic specificity. This suggests that autoantigenic specificity is independent from the nature of the autoantigen, but rather relies on the disease-specific milieu driving T-cell subset polarization and autoantigen modifications.
Collapse
|