1
|
Szabó I, Szenczi Á, Zand A, Varjas T, Varga C. The Effect of Szigetvár Medicinal Water on HaCaT Cells Exposed to Dithranol. Life (Basel) 2024; 14:1318. [PMID: 39459618 PMCID: PMC11509105 DOI: 10.3390/life14101318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Introduction: Topical dithranol is still commonly used today as an effective treatment for psoriasis. Dithranol treatment is often supplemented with balneotherapy, which has been shown to increase effectiveness and reduce side effects. The inorganic salts (sulfhide, selenium, zinc) are usually thought to be responsible for the effect. The antioxidant effect of the waters is thought to be behind the therapeutic effect, for which inorganic substances (sulfides, selenium, zinc) are thought to be responsible. The organic matter content of medicinal waters is also particularly important, as humic acids, which are often found in medicinal waters, have antioxidant effects. (2) Methods: In this short-term experiment, we aimed to test the possible protective effect of Szigetvár medicinal water and its organic matter isolate on HaCaT cells exposed to dithranol. Malondialdehyde levels were measured, and RT-qPCR was used to investigate the gene expression of selected cytokines relevant in the oxidative stress response (IL-6, IL-8, TNF-α, GM-CSF) and the expression of microRNA-21. (3) Results: Szigetvár medicinal water and the organic isolate prevented the increase in malondialdehyde levels caused by dithranol treatment. The cytokine gene expressions elevated by dithranol exposure were reduced by the treatment. (4) Conclusions: Szigetvár medicinal water and organic substances alone may have a protective effect on patients' healthy skin surfaces against dithranol damage. We also demonstrated that the organic compounds are also responsible for the protective effect.
Collapse
Affiliation(s)
- István Szabó
- Department of Public Health Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary; (Á.S.); (A.Z.); (T.V.); (C.V.)
| | | | | | | | | |
Collapse
|
2
|
Li M, Guo K, He Y, Li H, Sun W, Yuan X, Liu Z, Li X, Merriman TR, Li C, Zhang H. Natural Changbai mineral water reduces obesity risk through regulating metabolism and gut microbiome in a hyperuricemia male mouse model. Front Nutr 2024; 11:1308882. [PMID: 38347962 PMCID: PMC10859528 DOI: 10.3389/fnut.2024.1308882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Access to clean and safe drinking water is essential. This study aimed to evaluate the effect of a kind of small molecular natural mineral water, C-cell mineral water on hyperuricemia male mice metabolism condition. A 13-week drinking water intervention study was conducted in Uox-knockout mice (KO). The hepatic metabolite profiling and related genes expression were detected by UPLC-TOF-MS and transcriptomic, and the gut microbiota of KO mice was determined by metagenomics sequencing. Results showed that the body weight of mice fed with C-cell water was remarkably lower than that of control mice on D 77 and D 91. Hepatic metabolite profiling revealed a shift in the pathway of glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, and biosynthesis of cofactors in KO mice fed with C-cell mineral water. Increased energy metabolism levels were related to increased hepatic expression of genes responsible for coenzyme metabolism and lipid metabolism. Gut microbiota was characterized by increasing activity of beneficial bacteria Blautia, and reducing activity of pathobiont bacteria Parasutterella. These genera have been reported to be associated with obesity. Small molecular mineral-rich natural water ingestion regulates metabolism and gut microbiota, protecting against obesity induced by hyperuricemia through mediating a microbiota-liver axis.
Collapse
Affiliation(s)
- Maichao Li
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Guo
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuwei He
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hailong Li
- Medical College, Binhai University, Qingdao, China
| | - Wenyan Sun
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuan Yuan
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhen Liu
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinde Li
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tony R. Merriman
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Metabolic Diseases, Qingdao University, Qingdao, China
- Shandong Provincial Clinical Research Center for Immune Diseases and Gout, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Rasmont V, Valois A, Gueniche A, Sore G, Kerob D, Nielsen M, Berardesca E. Vichy volcanic mineralizing water has unique properties to strengthen the skin barrier and skin defenses against exposome aggressions. J Eur Acad Dermatol Venereol 2022; 36 Suppl 2:5-15. [PMID: 34979589 DOI: 10.1111/jdv.17784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
Exposome aggressions are known to weaken certain skin functions, such as skin barrier and skin defense functions. Vichy volcanic mineralizing water (VVMW) percolates through volcanic and magmatic rocks in the Auvergne region in France to create a pure, highly mineralized water containing 15 minerals for a total mineral concentration of 5.2 g/L. Here, we provide an overview of the main results of in vitro and ex vivo studies (keratinocyte cultures, 3D reconstructed skin model, skin explants) and clinical studies to evaluate the effect of VVMW on key skin functions to help elucidate how it counteracts exposome aggressions on the skin. Properties to strengthen the skin barrier: VVMW stimulated the synthesis of tight junction proteins and keratinocyte differentiation markers in vitro. In clinical studies, VVMW accelerated cell turnover and improved skin hydration. Properties to strengthen skin antioxidant defense: VVMW stimulated the expression of antioxidant defense markers and had a higher stimulatory effect than a competitor thermal water on the expression of superoxide dismutase, catalase, and glutathione peroxidase in keratinocytes in vitro. In vivo, VVMW restored endogenous catalase activity after exposure to UVA radiation. Anti-inflammatory action: VVMW reduced substance P-induced inflammation ex vivo and lactic acid-induced stinging in vivo. Topical application of VVMW in subjects with sensitive skin showed soothing and decongestant effects by reducing skin dryness and erythema. After sodium lauryl sulfate -induced skin barrier disruption, recovery from redness and erythema was faster following application of VVMW compared to a competitor water or untreated skin. These studies illustrate that VVMW has unique properties to repair and regenerate the skin barrier, as well as to strengthen antioxidant and immune defenses, which help protect the skin against exposome aggressions.
Collapse
Affiliation(s)
- V Rasmont
- Laboratoires Vichy, Levallois Perret, France
| | - A Valois
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - A Gueniche
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - G Sore
- L'Oréal Research & Innovation, Chevilly Larue, France
| | - D Kerob
- Laboratoires Vichy, Levallois Perret, France
| | - M Nielsen
- Laboratoires Vichy, Levallois Perret, France
| | - E Berardesca
- Phillip Frost Department of Dermatology, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Beneficial Effects of Natural Mineral Waters on Intestinal Inflammation and the Mucosa-Associated Microbiota. Int J Mol Sci 2021; 22:ijms22094336. [PMID: 33919372 PMCID: PMC8122343 DOI: 10.3390/ijms22094336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/28/2022] Open
Abstract
Natural mineral water (NMWs) intake has been traditionally used in the treatment of various gastrointestinal diseases. We investigated the effect of two French NMWs, one a calcium and magnesium sulphate, sodium chloride, carbonic, and ferruginous water (NMW1), the other a mainly bicarbonate water (NMW2) on the prevention of intestinal inflammation. Intestinal epithelial cells stimulated with heat inactivated Escherichia coli or H2O2 were treated with NMWs to evaluate the anti-inflammatory effects. Moderate colitis was induced by 1% dextran sulfate sodium (DSS) in Balbc/J mice drinking NMW1, NWW2, or control water. General signs and histological features of colitis, fecal lipocalin-2 and pro-inflammatory KC cytokine levels, global mucosa-associated microbiota, were analyzed. We demonstrated that both NMW1 and NMW2 exhibited anti-inflammatory effects using intestinal cells. In induced-colitis mice, NMW1 was effective in dampening intestinal inflammation, with significant reductions in disease activity scores, fecal lipocalin-2 levels, pro-inflammatory KC cytokine release, and intestinal epithelial lesion sizes. Moreover, NMW1 was sufficient to prevent alterations in the mucosa-associated microbiota. These observations, through mechanisms involving modulation of the mucosa-associated microbiota, emphasize the need of investigation of the potential clinical efficiency of such NMWs to contribute, in human beings, to a state of low inflammation in inflammatory bowel disease.
Collapse
|