1
|
Colarusso E, Lauro G, Potenza M, Galatello P, Garigliota MLD, Ferraro MG, Piccolo M, Chini MG, Irace C, Campiglia P, Hoffstetter RK, Werz O, Ramunno A, Bifulco G. 5-methyl-2-carboxamidepyrrole-based novel dual mPGES-1/sEH inhibitors as promising anticancer candidates. Arch Pharm (Weinheim) 2025; 358:e2400708. [PMID: 39692230 DOI: 10.1002/ardp.202400708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Inhibiting microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E2 (PGE2) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC50 values in the low micromolar range. With the aim of further profiling the synthesized molecules, their ability to interfere with the activity of soluble epoxide hydrolase (sEH), whose inhibition blocks the loss of the anti-inflammatory mediators epoxyeicosatrienoic acids (EETs or epoxyicosatrienoic acids), was investigated in silico and by employing specific biological assays. Among the set of tested compounds, 1f, 2b, 2c, and 2d emerged as mPGES-1/sEH dual inhibitors. Moreover, given that overexpression of mPGES-1 has been observed in many human tumors, we finally explored the biological effect of our compounds in an in vitro model of human colorectal cancer (CRC). The obtained outcomes pave the way for future investigation to optimize and further characterize anticancer pharmacological profile of the carboxamidepyrrole-based molecules.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Marianna Potenza
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Paola Galatello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine and Surgery, University of Naples, Naples, Italy
| | - Marialuisa Piccolo
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Carlo Irace
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Robert Klaus Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | |
Collapse
|
2
|
Reda N, Elshewy A, El-Askary HI, Mohamed KO, Helwa AA. Design, synthesis, and biological evaluation of new pyrimidine-5-carbonitrile derivatives as novel anti-cancer, dual EGFR WT/COX-2 inhibitors with docking studies. RSC Adv 2023; 13:32296-32320. [PMID: 37928843 PMCID: PMC10620772 DOI: 10.1039/d3ra06088h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
A novel series of pyrimidine-5-carbonitrile derivatives was designed, synthesized, then evaluated for their cytotoxic activity as novel anti-cancer with dual EGFRWT/COX-2 inhibitors. Two compounds 4e and 4f disclosed the highest activity against all NCI60 panel cell lines. They were most potent against Colo 205 (IC50 = 1.66, and 1.83 μM), Sequentially. The most potent two compounds disturbed cell cycle of Colo-205 cells by blocking the G1 phase, coupled with increased annexin-Vstained cells which indicated the increasing in percentage of apoptosis. In addition, 4e and 4f increase the concentration of caspase-3 by 10, and 8-fold compared to control, respectively. Moreover, the two candidate compounds were screened for cytotoxicity on normal epithelial colon cells; fortunately, they were found to be safe. Molecular docking study displayed that these compounds bound to the active site as EGFRWT/COX-2 inhibitors. Furthermore, 3D pharmacophore mapping disclosed many shared features between the most potent candidates 4e and 4f and the standard EGFRWT/COX-2 inhibitors; erlotinib, and celecoxib, respectively. Finally, the physicochemical parameter was calculated for the most potent novel anticancer candidates and the SwissAdme parameter showed that the newly synthesized compounds have good drug-likeness properties.
Collapse
Affiliation(s)
- Nada Reda
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| | - Ahmed Elshewy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University New Galala 43713 Egypt
| | - Hesham I El-Askary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy. Sinai University (Arish Branch) El Arish Egypt
| | - Amira A Helwa
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST) 6th of October City Egypt
| |
Collapse
|
3
|
Abdel Bar FM, Mira A, Foudah AI, Alossaimi MA, Alkanhal SF, Aldaej AM, ElNaggar MH. In Vitro and In Silico Investigation of Polyacetylenes from Launaea capitata (Spreng.) Dandy as Potential COX-2, 5-LOX, and BchE Inhibitors. Molecules 2023; 28:molecules28083526. [PMID: 37110760 PMCID: PMC10145610 DOI: 10.3390/molecules28083526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Diverse secondary metabolites are biosynthesized by plants via various enzymatic cascades. These have the capacity to interact with various human receptors, particularly enzymes implicated in the etiology of several diseases. The n-hexane fraction of the whole plant extract of the wild edible plant, Launaea capitata (Spreng.) Dandy was purified by column chromatography. Five polyacetylene derivatives were identified, including (3S,8E)-deca-8-en-4,6-diyne-1,3-diol (1A), (3S)-deca-4,6,8-triyne-1,3-diol (1B), (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1,3-diol (2), bidensyneoside (3), and (3S)-(6E,12E)-tetradecadiene-8,10-diyne-1-ol-3-O-β-D-glucopyranoside (4). These compounds were investigated for their in vitro inhibitory activity against enzymes involved in neuroinflammatory disorders, including cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), and butyrylcholinesterase (BchE) enzymes. All isolates recorded weak-moderate activities against COX-2. However, the polyacetylene glycoside (4) showed dual inhibition against BchE (IC50 14.77 ± 1.55 μM) and 5-LOX (IC50 34.59 ± 4.26 μM). Molecular docking experiments were conducted to explain these results, which showed that compound 4 exhibited greater binding affinity to 5-LOX (-8.132 kcal/mol) compared to the cocrystallized ligand (-6.218 kcal/mol). Similarly, 4 showed a good binding affinity to BchE (-7.305 kcal/mol), which was comparable to the cocrystallized ligand (-8.049 kcal/mol). Simultaneous docking was used to study the combinatorial affinity of the unresolved mixture 1A/1B to the active sites of the tested enzymes. Generally, the individual molecules showed lower docking scores against all the investigated targets compared to their combination, which was consistent with the in vitro results. This study demonstrated that the presence of a sugar moiety (in 3 and 4) resulted in dual inhibition of 5-LOX and BchE enzymes compared to their free polyacetylenes analogs. Thus, polyacetylene glycosides could be suggested as potential leads for developing new inhibitors against the enzymes involved in neuroinflammation.
Collapse
Affiliation(s)
- Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amira Mira
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed I Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shatha F Alkanhal
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alanoud M Aldaej
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mai H ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
4
|
Di Micco S, Terracciano S, Pierri M, Cantone V, Liening S, König S, Garscha U, Hofstetter RK, Koeberle A, Werz O, Bruno I, Bifulco G. Identification of 2,4-Dinitro-Biphenyl-Based Compounds as MAPEG Inhibitors. ChemMedChem 2022; 17:e202200327. [PMID: 36111583 PMCID: PMC9827972 DOI: 10.1002/cmdc.202200327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Indexed: 01/14/2023]
Abstract
We identified 2,4-dinitro-biphenyl-based compounds as new inhibitors of leukotriene C4 synthase (LTC4 S) and 5-lipoxygenase-activating protein (FLAP), both members of the "Membrane Associated Proteins in Eicosanoid and Glutathione metabolism" (MAPEG) family involved in the biosynthesis of pro-inflammatory eicosanoids. By molecular docking we evaluated the putative binding against the targets of interest, and by applying cell-free and cell-based assays we assessed the inhibition of LTC4 S and FLAP by the small molecules at low micromolar concentrations. The present results integrate the previously observed inhibitory profile of the tested compounds against another MAPEG member, i. e., microsomal prostaglandin E2 synthase (mPGES)-1, suggesting that the 2,4-dinitro-biphenyl scaffold is a suitable molecular platform for a multitargeting approach to modulate pro-inflammatory mediators in inflammation and cancer treatment.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS)Via Salvatore De Renzi 5084125SalernoItaly
| | - Stefania Terracciano
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II 13284084FiscianoSAItaly
| | - Martina Pierri
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II 13284084FiscianoSAItaly
| | - Vincenza Cantone
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II 13284084FiscianoSAItaly,Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich-Schiller-University JenaPhilosophenweg 147743JenaGermany
| | - Stefanie Liening
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich-Schiller-University JenaPhilosophenweg 147743JenaGermany
| | - Stefanie König
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich-Schiller-University JenaPhilosophenweg 147743JenaGermany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich-Schiller-University JenaPhilosophenweg 147743JenaGermany
| | - Robert Klaus Hofstetter
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich-Schiller-University JenaPhilosophenweg 147743JenaGermany
| | - Andreas Koeberle
- Michael Popp Research InstituteUniversity of InnsbruckMitterweg 246020InnsbruckAustria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich-Schiller-University JenaPhilosophenweg 147743JenaGermany
| | - Ines Bruno
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II 13284084FiscianoSAItaly
| | - Giuseppe Bifulco
- Department of PharmacyUniversity of SalernoVia Giovanni Paolo II 13284084FiscianoSAItaly
| |
Collapse
|
5
|
Latest progress in the development of cyclooxygenase-2 pathway inhibitors targeting microsomal prostaglandin E 2 synthase-1. Future Med Chem 2022; 14:385-388. [PMID: 34985304 PMCID: PMC8905551 DOI: 10.4155/fmc-2021-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Agomelatine might be more appropriate for elderly, depressed, type 2 diabetes mellitus patients than paroxetine/fluoxetine. Aging (Albany NY) 2021; 13:22934-22946. [PMID: 34610580 PMCID: PMC8544326 DOI: 10.18632/aging.203586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 12/16/2022]
Abstract
Agomelatine was a novel and melatonergic antidepressant. The present study was conducted to find out whether age was an important factor for agomelatine in treating depressed type 2 diabetes mellitus (T2DM) patients. In total, 193 depressed T2DM patients were included. There were 84 patients ranged from 27 years old to 49 years old (age phase I) (n = 44 receiving agomelatine, n = 40 receiving paroxetine or fluoxetine), and 109 patients ranged from 50 years old to 70 years old (age phase II) (n = 56 receiving agomelatine, n = 53 receiving paroxetine or fluoxetine). The Hamilton Depression Rating Scale (HDRS) score, Hamilton Anxiety Rating Scale (HARS) score, fasting plasma glucose (FPG), hemoglobin A1c (HbA1c) level and body mass index (BMI) were assessed after 12 weeks treatment. After treatment, we found that among patients in age phase I, there were no significant differences in final average HDRS score, HARS score, FPG, HbA1c level, BMI, response rate and remission rate between the two groups. However, among patients in age phase II, compared to patients receiving paroxetine or fluoxetine, patients receiving agomelatine had the significantly lower average HDRS score, HARS score, HbA1c level and BMI, and significantly higher response rate and remission rate. The incidence of treatment-related adverse events was similar between the two groups in both age phases. These results suggested that age was an important factor for agomelatine in treating depressed T2DM patients. Compared to paroxetine/fluoxetine, agomelatine might be more appropriate for elderly depressed T2DM patients.
Collapse
|