1
|
Zhao D, Ji H, Zhang W, He A, Guo C, Ma L, Liu Y. miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells. Genes Genomics 2025; 47:183-195. [PMID: 39567416 DOI: 10.1007/s13258-024-01598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Dry eye disease (DED) is an ocular illness caused by insufficient tear secretion or poor tear quality, and inflammation is a key factor in its pathogenesis. Previous studies have shown that miRNAs are important regulatory factors in DED. OBJECTIVE The purpose of this study was to explore the potential mechanism by which miR-214-3p influenced the DED process by regulating the macrophage inflammatory response. METHODS We induced THP-1 cells to differentiate into M0 macrophages with 100 ng/mL phorbol-12-myristate-13-acetate (PMA) and then added 15 ng/mL lipopolysaccharide (LPS) to induce inflammation. The expression of related genes and proteins was detected via RT‒qPCR, Western blotting, ELISA and immunofluorescence staining; cell viability was measured using the CCK-8 assay; and flow cytometry was used to detect ROS levels. RESULTS In tear and serum samples from DED patients, the levels of miR-214-3p, IL-10, and Arg1 were decreased, and the levels of IL-6, TNF-α, IL-1β, and iNOS expression were increased. Moreover, the overexpression of miR-214-3p attenuated the effect of LPS and inhibited M1 polarization and inflammation in macrophages. Mechanistically, miR-214-3p inhibited macrophage ferroptosis by downregulating TFRC expression, thereby inhibiting macrophage M1 polarization and inflammation and alleviating the progression of DED. CONCLUSIONS Our study indicated that the upregulation of miR-214-3p expression might be a new target for DED therapy.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China
| | - Hao Ji
- Department of Information, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Weijia Zhang
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China
| | - Anni He
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Caizhe Guo
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Li Ma
- Department of Ophthalmology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yan Liu
- Department of Ophthalmology, Yan'An Hospital of Kunming City, Kunming, , Yunnan, 650051, China.
| |
Collapse
|
2
|
Zheng C, Li Y, Wu X, Gao L, Chen X. Advances in the Synthesis and Physiological Metabolic Regulation of Nicotinamide Mononucleotide. Nutrients 2024; 16:2354. [PMID: 39064797 PMCID: PMC11279976 DOI: 10.3390/nu16142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Nicotinamide mononucleotide (NMN), the direct precursor of nicotinamide adenine dinucleotide (NAD+), is involved in the regulation of many physiological and metabolic reactions in the body. NMN can indirectly affect cellular metabolic pathways, DNA repair, and senescence, while also being essential for maintaining tissues and dynamic metabolic equilibria, promoting healthy aging. Therefore, NMN has found many applications in the food, pharmaceutical, and cosmetics industries. At present, NMN synthesis strategies mainly include chemical synthesis and biosynthesis. Despite its potential benefits, the commercial production of NMN by organic chemistry approaches faces environmental and safety problems. With the rapid development of synthetic biology, it has become possible to construct microbial cell factories to produce NMN in a cost-effective way. In this review, we summarize the chemical and biosynthetic strategies of NMN, offering an overview of the recent research progress on host selection, chassis cell optimization, mining of key enzymes, metabolic engineering, and adaptive fermentation strategies. In addition, we also review the advances in the role of NMN in aging, metabolic diseases, and neural function. This review provides comprehensive technical guidance for the efficient biosynthesis of NMN as well as a theoretical basis for its application in the fields of food, medicine, and cosmetics.
Collapse
Affiliation(s)
- Chuxiong Zheng
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Yumeng Li
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xin Wu
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Le Gao
- National Technology Innovation Center for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin 300308, China; (Y.L.); (X.W.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
3
|
Sun Z, Liu L, Liang H, Zhang L. Nicotinamide mononucleotide induces autophagy and ferroptosis via AMPK/mTOR pathway in hepatocellular carcinoma. Mol Carcinog 2024; 63:577-588. [PMID: 38197493 DOI: 10.1002/mc.23673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Herein, we investigated the role of nicotinamide mononucleotide (NMN) in HCC progression. HCC cells were treated with NMN (125, 250, and 500 μM), and then nicotinamide adenine dinucleotide (NAD+ ) and NADH levels in HCC cells were measured to calculate NAD+ /NADH ratio. Cell proliferation, apoptosis, autophagy and ferroptosis were determined. AMPK was knocked down to confirm the involvement of AMPK/mTOR signaling. Furthermore, tumor-inhibitory effect of NMN was investigated in xenograft models. Exposure to NMN dose-dependently increased NAD+ level and NAD+ /NADH ratio in HCC cells. After NMN treatment, cell proliferation was inhibited, whereas apoptosis was enhanced in both cell lines. Additionally, NMN dose-dependently enhanced autophagy/ferroptosis and activated AMPK/mTOR pathway in HCC cells. AMPK knockdown partially rescued the effects of NMN in vitro. Furthermore, NMN treatment restrained tumor growth in nude mice, activated autophagy/ferroptosis, and promoted apoptosis and necrosis in tumor tissues. The results indicate that NMN inhibits HCC progression by inducing autophagy and ferroptosis via AMPK/mTOR signaling. NMN may serve as a promising agent for HCC treatment.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongyuan Liang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Lee D, Tomita Y, Shinojima A, Ban N, Yamaguchi S, Nishioka K, Negishi K, Yoshino J, Kurihara T. Nicotinamide mononucleotide, a potential future treatment in ocular diseases. Graefes Arch Clin Exp Ophthalmol 2024; 262:689-700. [PMID: 37335334 DOI: 10.1007/s00417-023-06118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE The burden of ocular diseases has been gradually increasing worldwide. Various factors are suggested for the development and progression of ocular diseases, such as ocular inflammation, oxidative stress, and complex metabolic dysregulation. Thus, managing ocular diseases requires the modulation of pathologic signaling pathways through many mechanisms. Nicotinamide mononucleotide (NMN) is a bioactive molecule naturally found in life forms. NMN is a direct precursor of the important molecule nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme required for enormous cellular functions in most life forms. While the recent experimental evidence of NMN treatment in various metabolic diseases has been well-reviewed, NMN treatment in ocular diseases has not been comprehensively summarized yet. In this regard, we aimed to focus on the therapeutic roles of NMN treatment in various ocular diseases with recent advances. METHODS How we came to our current opinion with a recent summary was described based on our own recent reports as well as a search of the related literature. RESULTS We found that NMN treatment might be available for the prevention of and protection from various experimental ocular diseases, as NMN treatment modulated ocular inflammation, oxidative stress, and complex metabolic dysregulation in murine models for eye diseases such as ischemic retinopathy, corneal defect, glaucoma, and age-related macular degeneration. CONCLUSION Our current review suggests and discusses new modes of actions of NMN for the prevention of and protection from various ocular diseases and can urge future research to obtain more solid evidence on a potential future NMN treatment in ocular diseases at the preclinical stages.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Norimitsu Ban
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shintaro Yamaguchi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ken Nishioka
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jun Yoshino
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
5
|
Wang Z, Zhou S, Hao Y, Xu T, An P, Luo Y, Luo J. Nicotinamide mononucleotide protects against high-fat-diet-induced atherosclerosis in mice and dampens aortic inflammation and oxidative stress. J Funct Foods 2024; 112:105985. [DOI: 10.1016/j.jff.2023.105985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
6
|
Zhang C, Li Y, Bai F, Talifu Z, Ke H, Xu X, Li Z, Liu W, Pan Y, Gao F, Yang D, Wang X, Du H, Guo S, Gong H, Du L, Yu Y, Li J. The identification of new roles for nicotinamide mononucleotide after spinal cord injury in mice: an RNA-seq and global gene expression study. Front Cell Neurosci 2023; 17:1323566. [PMID: 38155866 PMCID: PMC10752985 DOI: 10.3389/fncel.2023.1323566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Nicotinamide mononucleotide (NMN), an important transforming precursor of nicotinamide adenine dinucleotide (NAD+). Numerous studies have confirmed the neuroprotective effects of NMN in nervous system diseases. However, its role in spinal cord injury (SCI) and the molecular mechanisms involved have yet to be fully elucidated. Methods We established a moderate-to-severe model of SCI by contusion (70 kdyn) using a spinal cord impactor. The drug was administered immediately after surgery, and mice were intraperitoneally injected with either NMN (500 mg NMN/kg body weight per day) or an equivalent volume of saline for seven days. The central area of the spinal cord was harvested seven days after injury for the systematic analysis of global gene expression by RNA Sequencing (RNA-seq) and finally validated using qRT-PCR. Results NMN supplementation restored NAD+ levels after SCI, promoted motor function recovery, and alleviated pain. This could potentially be associated with alterations in NAD+ dependent enzyme levels. RNA sequencing (RNA-seq) revealed that NMN can inhibit inflammation and potentially regulate signaling pathways, including interleukin-17 (IL-17), tumor necrosis factor (TNF), toll-like receptor, nod-like receptor, and chemokine signaling pathways. In addition, the construction of a protein-protein interaction (PPI) network and the screening of core genes showed that interleukin 1β (IL-1β), interferon regulatory factor 7 (IRF 7), C-X-C motif chemokine ligand 10 (Cxcl10), and other inflammationrelated factors, changed significantly after NMN treatment. qRT-PCR confirmed the inhibitory effect of NMN on inflammatory factors (IL-1β, TNF-α, IL-17A, IRF7) and chemokines (chemokine ligand 3, Cxcl10) in mice following SCI. Conclusion The reduction of NAD+ levels after SCI can be compensated by NMN supplementation, which can significantly restore motor function and relieve pain in a mouse model. RNA-seq and qRT-PCR systematically revealed that NMN affected inflammation-related signaling pathways, including the IL-17, TNF, Toll-like receptor, NOD-like receptor and chemokine signaling pathways, by down-regulating the expression of inflammatory factors and chemokines.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Li
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunzhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Xiaoxin Wang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Huayong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Shuang Guo
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- China Rehabilitation Science Institute, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
7
|
Liu S, Zhang W. NAD + metabolism and eye diseases: current status and future directions. Mol Biol Rep 2023; 50:8653-8663. [PMID: 37540459 DOI: 10.1007/s11033-023-08692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Currently, there are no truly effective treatments for a variety of eye diseases, such as glaucoma, age-related macular degeneration (AMD), and inherited retinal degenerations (IRDs). These conditions have a significant impact on patients' quality of life and can be a burden on society. However, these diseases share a common pathological process of NAD+ metabolism disorders. They are either associated with genetically induced primary NAD+ synthase deficiency, decreased NAD+ levels due to aging, or enhanced NAD+ consuming enzyme activity during disease pathology. In this discussion, we explore the role of NAD+ metabolic disorders in the development of associated ocular diseases and the potential advantages and disadvantages of various methods to increase NAD+ levels. It is essential to carefully evaluate the possible adverse effects of these methods and conduct a more comprehensive and objective assessment of their function before considering their use.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Ophthalmology, Second Clinical Medical College, Lanzhou University, 730030, Lanzhou, VA, China
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, 730030, Lanzhou, VA, China.
| |
Collapse
|
8
|
Han Y, Zhang Y, Yuan K, Wu Y, Jin X, Huang X. Hyperosmolarity promotes macrophage pyroptosis by driving the glycolytic reprogramming of corneal epithelial cells in dry eye disease. Front Med 2023; 17:781-795. [PMID: 37266854 DOI: 10.1007/s11684-023-0986-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 01/28/2023] [Indexed: 06/03/2023]
Abstract
Tear film hyperosmolarity plays a core role in the development of dry eye disease (DED) by mediating the disruption of ocular surface homeostasis and triggering inflammation in ocular surface epithelium. In this study, the mechanisms involving the hyperosmolar microenvironment, glycolysis mediating metabolic reprogramming, and pyroptosis were explored clinically, in vitro, and in vivo. Data from DED clinical samples indicated that the expression of glycolysis and pyroptosis-related genes, including PKM2 and GSDMD, was significantly upregulated and that the secretion of IL-1β significantly increased. In vitro, the indirect coculture of macrophages derived from THP-1 and human corneal epithelial cells (HCECs) was used to discuss the interaction among cells. The hyperosmolar environment was found to greatly induce HCECs' metabolic reprogramming, which may be the primary cause of the subsequent inflammation in macrophages upon the activation of the related gene and protein expression. 2-Deoxy-d-glucose (2-DG) could inhibit the glycolysis of HCECs and subsequently suppress the pyroptosis of macrophages. In vivo, 2-DG showed potential efficacy in relieving DED activity and could significantly reduce the overexpression of genes and proteins related to glycolysis and pyroptosis. In summary, our findings suggested that hyperosmolar-induced glycolytic reprogramming played an active role in promoting DED inflammation by mediating pyroptosis.
Collapse
Affiliation(s)
- Yu Han
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Kelan Yuan
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Yaying Wu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, China.
| |
Collapse
|
9
|
Liu Y, Gong JS, Marshall G, Su C, Shi JS, Xu ZH. Technology and functional insights into the nicotinamide mononucleotide for human health. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12612-2. [PMID: 37347262 DOI: 10.1007/s00253-023-12612-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Nicotinamide mononucleotide (NMN), a naturally occurring biologically active nucleotide, mainly functions via mediating the biosynthesis of NAD+. In recent years, its excellent pharmacological activities including anti-aging, treating neurodegenerative diseases, and protecting the heart have attracted increasing attention from scholars and entrepreneurs for production of a wide range of formulations, including functional food ingredients, health care products, active pharmaceuticals, and pharmaceutical intermediates. Presently, the synthesis methods of NMN mainly include two categories: chemical synthesis and biosynthesis. With the development of biocatalyst engineering and synthetic biology strategies, bio-preparation has proven to be efficient, economical, and sustainable methods. This review summarizes the chemical synthesis and biosynthetic pathways of NMN and provides an in-depth investigation on the mining and modification of enzyme resources during NMN biosynthesis, as well as the screening of hosts and optimization of chassis cells via metabolic engineering, which provide effective strategies for efficient production of NMN. In addition, an overview of the significant physiological functions and activities of NMN is elaborated. Finally, future research on technical approaches to further enhance NMN synthesis and strengthen clinical studies of NMN are prospected, which would lay the foundation for further promoting the application of NMN in nutrition, healthy food, and medicine in the future. KEY POINTS: • NMN supplementation effectively increases the level of NAD+. • The chemical and biological synthesis of NMN are comprehensively reviewed. • The impact of NMN on the treatment of various diseases is summarized.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, 214200, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - George Marshall
- Seragon Biosciences, Inc., 400 Spectrum Center Drive, 16th Floor, Irvine, CA, 92618, USA
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, 214200, People's Republic of China
| |
Collapse
|
10
|
Wang L, Zhao M, Qian R, Wang M, Bao Q, Chen X, Du W, Zhang L, Ye T, Xie Y, Zhang B, Peng L, Yao Y. Nicotinamide Mononucleotide Ameliorates Silica-Induced Lung Injury through the Nrf2-Regulated Glutathione Metabolism Pathway in Mice. Nutrients 2022; 15:nu15010143. [PMID: 36615800 PMCID: PMC9823503 DOI: 10.3390/nu15010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) is a natural antioxidant approved as a nutritional supplement and food ingredient, but its protective role in silicosis characterized by oxidative damage remains unknown. In this study, we generated a silicosis model by intratracheal instillation of silica, and then performed histopathological, biochemical, and transcriptomic analysis to evaluate the role of NMN in silicosis. We found that NMN mitigated lung damage at 7 and 28 days, manifested as a decreasing coefficient of lung weight and histological changes, and alleviated oxidative damage by reducing levels of reactive oxygen species and increasing glutathione. Meanwhile, NMN treatment also reduced the recruitment of inflammatory cells and inflammatory infiltration in lung tissue. Transcriptomic analysis showed that NMN treatment mainly regulated immune response and glutathione metabolism pathways. Additionally, NMN upregulated the expression of antioxidant genes Gstm1, Gstm2, and Mgst1 by promoting the expression and nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf2). Gene interaction analysis showed that Nrf2 interacted with Gstm1 and Mgst1 through Gtsm2. Promisingly, oxidative damage mediated by these genes occurred mainly in fibroblasts. In summary, NMN alleviates silica-induced oxidative stress and lung injury by regulating the endogenous glutathione metabolism pathways. This study reveals that NMN supplementation might be a promising strategy for mitigating oxidative stress and inflammation in silicosis.
Collapse
Affiliation(s)
- Liqun Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Working Group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Working Group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Qian
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xuxi Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Working Group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Du
- West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Working Group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Chengdu Chuanyu Jianwei Biotechnology Co., Ltd., Chengdu 610213, China
| | - Ben Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Working Group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lijun Peng
- West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Working Group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.P.); (Y.Y.); Tel.: +86-13208119408 (L.P.); +86-17711095243 (Y.Y.)
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education Office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- West China Occupational Pneumoconiosis Cohort Study (WCOPCS) Working Group, Research Center for Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (L.P.); (Y.Y.); Tel.: +86-13208119408 (L.P.); +86-17711095243 (Y.Y.)
| |
Collapse
|
11
|
Lin M, Sun X, Ye S, Chen Y, Gao J, Yuan F, Lin N, Lawson T, Liu Y, Deng R. A new antioxidant made from a pterostilbene functionalized graphene nanocomposite as an efficient treatment for dry eye disease. Front Chem 2022; 10:942578. [PMID: 36092674 PMCID: PMC9449147 DOI: 10.3389/fchem.2022.942578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dry eye disease is a common condition that affects the eyes. It is caused by problems with the tear film and the tear dynamics. Dry eye can be caused by an increase in the amount of reactive oxygen species (ROS) in the corneal epithelium. The treatment for dry eye typically focuses on relieving the uncomfortable symptoms by using eye drops such as artificial tears, antibiotics, and by using anti-inflammatory/immunosuppressive agents such as cyclosporine, and lifitegrast. However, the recovery of patients with dry eye can take several years particularly if the symptoms are severe. This is because the present treatment approaches for dry eye are not based on its cause, e.g., the oxidative stress arising from the rapid increase in ROS. This work describes a new type of antioxidant made from pterostilbene (PS) and carboxyl-chitosan modified graphene (CG). The use of a hydrophilic two-dimensional CG nanosheet to improve the properties of PS is reported. Superior enhanced properties including better cellular permeability, long sustained release period (over 30 h), and antioxidant properties, were realized by using PS-CG. A hyperosmotic (HS) damaged human corneal epithelial cell (HCEC) model was used for antioxidant tests. This model has an intracellular ROS level 4 times more than that of a control group. The ROS content was declined efficiently to the same amount as normal cells in the PS-CG treated HS group. There was a significant decline in the content of lactate dehydrogenase (LDH) and the apoptosis rate of HCEC in the PS-CG treated HS group when compared to that seen in the HS model. Real-time polymerase chain reaction (PCR) and western blots (WB) were used to understand the antioxidant mechanism of PS-CG. The results showed that the antioxidant was working by activating the Keap1-Nrf2-ARE signalling pathway. In vivo testing testing using a dry eye mouse model suggested that the PS-CG acted as an efficient antioxidant. More tear production and healthier corneal and conjunctival epithelial cells were achieved when PC-CG was applied to this model. The use of PS-CG could be a new strategy for treating dry eye and other ocular diseases caused by ROS.
Collapse
Affiliation(s)
- Mimi Lin
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueqin Sun
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sihao Ye
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Youyi Chen
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Gao
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feng Yuan
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Lin
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tom Lawson
- School of Mathematical and Physical Sciences, ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW, Australia
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Yong Liu, ; Ruzhi Deng,
| | - Ruzhi Deng
- Laboratory of Nanoscale Biosensing and Bioimaging (NBAB), School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Ophthalmology, Optometry, and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Yong Liu, ; Ruzhi Deng,
| |
Collapse
|
12
|
Wang HH, Chen WY, Huang YH, Hsu SM, Tsao YP, Hsu YH, Chang MS. Interleukin-20 is involved in dry eye disease and is a potential therapeutic target. J Biomed Sci 2022; 29:36. [PMID: 35681232 PMCID: PMC9178884 DOI: 10.1186/s12929-022-00821-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dry eye disease (DED) is a common disease in ophthalmology, affecting millions of people worldwide. Recent studies have shown that inflammation is the core mechanism of DED. IL-20 is a proinflammatory cytokine involved in various inflammatory diseases. Therefore, we aimed to explore the role of this cytokine in the pathogenesis of DED and evaluate the therapeutic potential of the anti-IL-20 monoclonal antibody (mAb) 7E for DED treatment. Methods Clinical tear samples from patients with DED and non-DED controls were collected and their IL-20 protein levels were determined. We established three DED animal models to explore the role of IL-20 and the efficacy of IL-20 antibody in DED. Benzalkonium chloride (BAC)-induced over-evaporative DED, extra-orbital lacrimal gland excision (LGE)-induced aqueous tear-deficient DED, and desiccating stress (DS)-induced combined over-evaporative and aqueous tear-deficient DED animal models were established to investigate the role of IL-20. The anti-IL-20 antibody 7E was established to neutralize IL-20 activity. The effects of IL-20 or 7E on human corneal epithelial cells and macrophages under hyperosmotic stress were analyzed. 7E was topically applied to eyes to evaluate the therapeutic effects in the DED animal models. Results IL-20 was significantly upregulated in the tears of patients with DED and in the tears and corneas of DED animal models. Under hyperosmotic stress, IL-20 expression was induced via NFAT5 activation in corneal epithelial cells. 7E suppressed hyperosmotic stress-induced activation of macrophages. IL-20 induced cell death in corneal epithelial cells and 7E protected cells from hyperosmotic stress-induced cell death. Blocking IL-20 signaling with 7E protected mice from BAC-induced, LGE-induced, and DS-induced DED by reducing DED symptoms and inhibiting inflammatory responses, macrophage infiltration, apoptosis, and Th17 populations in the conjunctiva and draining lymph nodes. Conclusions Our results demonstrated the functions of IL-20 in DED and presented a potential therapeutic option for this condition. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00821-2.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yu Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsun Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Ophthalmology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|