1
|
Liu W, Zeng X, Wang X, Hu Y, Chen L, Luo N, Ouyang D, Rao T. 2,3,5,4'- tetrahydroxystilbene-2-O-β-D- glucopyranoside (TSG)-Driven immune response in the hepatotoxicity of Polygonum multiflorum. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117865. [PMID: 38369066 DOI: 10.1016/j.jep.2024.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) as the primary constituent of Polygonum multiflorum Thumb. (PM) possesses anti-oxidative, antihypercholesterolemic, anti-tumor and many more biological activities. The root of PM has been used as a tonic medicine for thousands of years. However, cases of PM-induced liver injury are occasionally reported, and considered to be related to the host immune status. AIM OF THE STUDY The primary toxic elements and specific mechanisms PM causing liver damage are still not thoroughly clear. Our study aimed to investigate the influences of TSG on the immune response in idiosyncratic hepatotoxicity of PM. MATERIALS AND METHODS The male C57BL/6 mice were treated with different doses of TSG and the alterations in liver histology, serum liver enzyme levels, proportions of T cells and cytokines secretion were evaluated by hematoxylin and eosin (HE), RNA sequencing, quantitative real time polymerase chain reaction (qRT-PCR), Flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA), respectively. Then, primary spleen cells from drug-naive mice were isolated and cultured with TSG in vitro. T cell subsets proliferation and cytokines secretion after treated with TSG were assessed by CCK8, FCM and ELISA. In addition, mice were pre-treated with anti-CD25 for depleting regulatory T cells (Tregs), and then administered with TSG. Liver functions and immunological alterations were analyzed to evaluate liver injury. RESULTS Data showed that TSG induced liver damage, and immune cells infiltration in the liver tissues. FCM results showed that TSG could activate CD4+T and CD8+T in the liver. Results further confirmed that TSG notably up-regulated the levels of inflammatory cytokines including TNF-α, IFN-γ, IL-18, perforin and granzyme B in the liver tissues. Furthermore, based on transcriptomics profiles, some immune system-related pathways including leukocyte activation involved in inflammatory response, leukocyte cell-cell adhesion, regulation of interleukin-1 beta production, mononuclear cell migration, antigen processing and presentation were altered in TSG treated mice. CD8+T/CD4+T cells were also stimulated by TSG in vitro. Interestingly, increased proportion of Tregs was observed after TSG treatment in vitro and in vivo. Foxp3 and TGF-β1 mRNA expressions were up-regulated in the liver tissues. Depletion of Tregs moderately enhanced TSG induced the secretion of inflammatory cytokines in serum. CONCLUSIONS Our findings showed that TSG could trigger CD4+T and CD8+T cells proliferation, promote cytokines secretion, which revealed that adaptive immune response associated with the mild liver injury cause by TSG administration. Regulatory T cells (Tregs) mainly sustain immunological tolerance, and in this study, the progression of TSG induced liver injury was limited by Tregs. The results of our investigations allow us to preliminarily understand the mechanisms of PM related idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, 541001, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, Hunan Province, 410221, China
| | - Xinfeng Wang
- Department of Human Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, China
| | - Yuwei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, Hunan Province, 410221, China
| | - Naixiang Luo
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, Hunan Province, 410221, China.
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China.
| |
Collapse
|
2
|
Mao Y, Ma S, Liu C, Liu X, Su M, Li D, Li Y, Chen G, Chen J, Chen J, Zhao J, Guo X, Tang J, Zhuge Y, Xie Q, Xie W, Lai R, Cai D, Cai Q, Zhi Y, Li X. Chinese guideline for the diagnosis and treatment of drug-induced liver injury: an update. Hepatol Int 2024; 18:384-419. [PMID: 38402364 DOI: 10.1007/s12072-023-10633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/18/2023] [Indexed: 02/26/2024]
Abstract
Drug-induced liver injury (DILI) is an important adverse drug reaction that can lead to acute liver failure or even death in severe cases. Currently, the diagnosis of DILI still follows the strategy of exclusion. Therefore, a detailed history taking and a thorough and careful exclusion of other potential causes of liver injury is the key to correct diagnosis. This guideline was developed based on evidence-based medicine provided by the latest research advances and aims to provide professional guidance to clinicians on how to identify suspected DILI timely and standardize the diagnosis and management in clinical practice. Based on the clinical settings in China, the guideline also specifically focused on DILI in chronic liver disease, drug-induced viral hepatitis reactivation, common causing agents of DILI (herbal and dietary supplements, anti-tuberculosis drugs, and antineoplastic drugs), and signal of DILI in clinical trials and its assessment.
Collapse
Affiliation(s)
- Yimin Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China.
| | - Shiwu Ma
- Department of Infectious Diseases, The 920th Hospital of Chinese PLA Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoyan Liu
- Department of Pharmacy, Huangpu Branch of the 9th People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongliang Li
- Department of Hepatobiliary Medicine, The 900th Hospital of Chinese PLA Joint Logistics Support Force, Fuzhou, 350025, Fujian, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Gongying Chen
- Department of Liver Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Jun Chen
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China
| | - Jinjun Chen
- Hepatology Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Guo
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wen Xie
- Center of Liver Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, 100088, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dachuan Cai
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qingxian Cai
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China
| | - Yang Zhi
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Shanghai, 200001, China
| |
Collapse
|
3
|
Shi W, Liu T, Yang H, Zhao J, Wei Z, Huang Y, Li Z, Li H, Liang L, Hou X, Chen Y, Gao Y, Bai Z, Xiao X. Isomaculosidine facilitates NLRP3 inflammasome activation by promoting mitochondrial reactive oxygen species production and causes idiosyncratic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117063. [PMID: 37598766 DOI: 10.1016/j.jep.2023.117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dictamnus dasycarpus Turcz. (Dictamni Cortex, DC), a Chinese herbal medicine, is commonly used for treating chronic dermatosis and rheumatism, but can also cause herb-induced liver injury (HILI). Our study has demonstrated that DC can induce idiosyncratic HILI, but the mechanism remains unknown. The NLRP3 inflammasome has become a major target for addressing many diseases. The activation of NLRP3 inflammasome is responsible for many liver-related inflammatory diseases, including idiosyncratic HILI. AIM OF THE STUDY The objective of our study was to demonstrate the mechanism underlying the idiosyncratic HILI induced by DC and clarify the susceptible component in DC. MATERIALS AND METHODS Bone marrow-derived macrophages (BMDMs) and THP1 cells were selected to assess the effect of isomaculosidine (IMD) on NLRP3 inflammasome activation in vitro. Western blot, ELISA and Caspase-Glo® 1 Inflammasome Assay, flow cytometry and Immunofluorescence were employed to detect the mechanism of IMD on NLRP3 inflammasome activation. To assess the efficacy of IMD in vivo, mice were intravenously administrated with LPS and then IMD were injected intraperitoneally for 6 h. RESULTS The results of our in vitro studies demonstrate that IMD, the major constituent of DC, specifically promoted ATP- and nigericin-induced activation of NLRP3 inflammasome, but not NLRC4 and AIM2 inflammasomes. Additionally, IMD promoted nigericin-induced ASC oligomerization. Notably, synergistic induction of mtROS played a key role on the activation of NLRP3 inflammasome. IMD increased the mtROS production in the activation of NLRP3 inflammasome induced by nigericin. In addition, the results of our in vivo study showed that the combination of nonhepatotoxic doses of LPS and IMD can increase the levels of ALT, AST, and DBIL, leading to liver injury. CONCLUSIONS IMD specifically facilitated the activation of NLRP3 inflammasome induced by nigericin and ATP, which is responsible for DC-induced idiosyncratic HILI.
Collapse
Affiliation(s)
- Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tingting Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Huijie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ziying Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Longxin Liang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Ma ZT, Shi Z, Xiao XH, Wang JB. New Insights into Herb-Induced Liver Injury. Antioxid Redox Signal 2023; 38:1138-1149. [PMID: 36401515 PMCID: PMC10259609 DOI: 10.1089/ars.2022.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Significance: Herbs are widely used worldwide. However, inappropriate use of some of the herbs can lead to herb-induced liver injury (HILI). Intriguingly, HILI incidents are on the rise, and our understanding of the underlying etiologies is in progress, and hence, an update on the current status of incidents as well as our understanding on the etiologies of HILI is appropriate. Recent Advances: HILI reports due to the use of some herbs that are traditionally considered to be safe are also on the rise. Furthermore, HILI due to the use of certain herbs in combination with other herbs (herb-herb interaction [HHI]) or non-herb components (herb-drug interaction [HDI]) has also been reported, suggesting a potentially important new type of inappropriate use of herbs. Critical Issues: Updated overviews focus on the epidemiology, etiology, phenotypes, and risk factors of HILI, as well as HDI and HHI, and analysis on several types of newly reported "toxic" effects of herbs based on types of hepatotoxicity and the HILI mechanisms. Future Directions: HILI will continue to be a significant public health challenge in the near future. In the light of the lack of broadly available guidelines and regulations for proper and safe uses of herbs worldwide, raising the public awareness of HILI will remain one of the most effective measures. In particular, it should include a better understanding of the contributing factors; a more detail subclassification and description of HILI, better characterization of the components/substances that could induce HILI; and development of HILI diagnosis based on the Roussel Uclaf Causality Assessment Method (RUCAM). Antioxid. Redox Signal. 38, 1138-1149.
Collapse
Affiliation(s)
- Zhi-Tao Ma
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhuo Shi
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Tu C, Xu Z, Tian L, Yu Z, Wang T, Guo Z, Zhang J, Wang T. Multi-Omics Integration to Reveal the Mechanism of Hepatotoxicity Induced by Dictamnine. Front Cell Dev Biol 2021; 9:700120. [PMID: 34595163 PMCID: PMC8476863 DOI: 10.3389/fcell.2021.700120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023] Open
Abstract
Herb-induced liver injury (HILI) has become a great concern worldwide due to the widespread usage of herbal products. Among these products is Dictamni Cortex (DC), a well-known Traditional Chinese Medicine (TCM), widely used to treat chronic dermatosis. Dictamni Cortex has drawn increasing attention because of its hepatotoxicity caused by the hepatotoxic component, dictamnine. However, the potential hepatotoxicity mechanism of dictamnine remains unclear. Therefore, this study aimed to use the multi-omics approach (transcriptomic, metabolomic, and proteomic analyses) to identify genes, metabolites, and proteins expressions associated with dictamnine-induced hepatotoxicity. A study on mice revealed that a high dose of dictamnine significantly increases serum aspartate aminotransferase (AST) activity, total bilirubin (TBIL), and direct bilirubin (DBIL) levels, the relative liver weight and liver/brain weight ratio in female mice (P < 0.05 and P < 0.01), compared to the normal control group. Liver histologic analysis further revealed a high dose of dictamnine on female mice caused hepatocyte vesicular steatosis characterized by hepatocyte microvesicles around the liver lobules. The expressed genes, proteins, and metabolites exhibited strong associations with lipid metabolism disorder and oxidative stress. Dictamnine caused increased oxidative stress and early hepatic apoptosis via up-regulation of glutathione S transferase a1 (GSTA1) and Bax/Bcl-2 ratio and down-regulation of the antioxidative enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase 1 (GPx-1). Besides, the up-regulation of Acyl-CoA synthetase long-chain family member 4 (ACSL4) and down-regulation of acetyl-coa acetyltransferase 1 (ACAT1) and fatty acid binding protein 1 (FABP-1) proteins were linked to lipid metabolism disorder. In summary, dictamnine induces dose-dependent hepatotoxicity in mice, which impairs lipid metabolism and aggravates oxidative stress.
Collapse
Affiliation(s)
- Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ziying Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lichun Tian
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihui Yu
- Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tieshang Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaojuan Guo
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhai XR, Zou ZS, Wang JB, Xiao XH. Herb-Induced Liver Injury Related to Reynoutria multiflora (Thunb.) Moldenke: Risk Factors, Molecular and Mechanistic Specifics. Front Pharmacol 2021; 12:738577. [PMID: 34539416 PMCID: PMC8443768 DOI: 10.3389/fphar.2021.738577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal medicine is widely used in Asia as well as the west. Hepatotoxicity is one of the most severe side effects of herbal medicine which is an increasing concern around the world. Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb., PM) is the most common herb that can cause herb-induced liver injury (HILI). The recent scientific and technological advancements in clinical and basic research are paving the way for a better understanding of the molecular aspects of PM-related HILI (PM-HILI). This review provides an updated overview of the clinical characteristics, predisposing factors, hepatotoxic components, and molecular mechanisms of PM-HILI. It can also aid in a better understanding of HILI and help in further research on the same.
Collapse
Affiliation(s)
- Xing-Ran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Zheng-Sheng Zou
- Peking University 302 Clinical Medical School, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-He Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|