Kuang L, Wang P, Zhou L, Li Y. Strategies and influencing factors for the treatment of advanced non-small cell lung cancer based on epidermal growth factor receptor tyrosine kinase inhibitors: a narrative review.
Transl Cancer Res 2024;
13:5123-5140. [PMID:
39430833 PMCID:
PMC11483425 DOI:
10.21037/tcr-24-637]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/19/2024] [Indexed: 10/22/2024]
Abstract
Background and Objective
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the primary treatment for advanced non-small cell lung cancer (NSCLC) patients with EGFR mutations, significantly enhancing patient prognosis. Despite the efficacy of EGFR-TKIs, monotherapy faces challenges such as variability among individuals and early drug resistance. This article aims to explore the treatment strategies and influencing factors for advanced NSCLC patients treated with EGFR-TKIs, optimize treatment plans, and improve the prognosis of patients with advanced NSCLC.
Methods
We undertook a comprehensive, narrative review of the latest literature to define the current application and progress of EGFR-TKIs in treating patients with advanced NSCLC.
Key Content and Findings
The efficacy and promise of EGFR-TKIs, both as monotherapy and combined with other agents, for treating patients with advanced NSCLC are outlined. The study delves into the mechanisms of resistance and the ongoing development of EGFR-TKIs. Various factors influencing the treatment of advanced NSCLC patients with EGFR-TKIs are also examined.
Conclusions
EGFR-TKIs alone improve survival in patients with advanced NSCLC. Combined with other agents, some regimens have shown improved benefits in overcoming drug resistance and prolonging patient survival. It is imperative to focus on developing novel EGFR-TKIs and investigate innovative combination therapies to maximize patient benefit.
Collapse