1
|
Iannotti FA. Cannabinoids, Endocannabinoids, and Synthetic Cannabimimetic Molecules in Neuromuscular Disorders. Int J Mol Sci 2023; 25:238. [PMID: 38203407 PMCID: PMC10779239 DOI: 10.3390/ijms25010238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Neuromuscular disorders (NMDs) encompass a large heterogeneous group of hereditary and acquired diseases primarily affecting motor neurons, peripheral nerves, and the skeletal muscle system. The symptoms of NMDs may vary depending on the specific condition, but some of the most common ones include muscle weakness, pain, paresthesias, and hyporeflexia, as well as difficulties with swallowing and breathing. NMDs are currently untreatable. Therapeutic options include symptomatic and experimental medications aimed at delaying and alleviating symptoms, in some cases supplemented by surgical and physical interventions. To address this unmet medical need, ongoing research is being conducted on new treatments, including studies on medical cannabis, endocannabinoids, and related molecules with cannabimimetic properties. In this context, a significant amount of knowledge about the safety and effectiveness of cannabinoids in NMDs has been obtained from studies involving patients with multiple sclerosis experiencing pain and spasticity. In recent decades, numerous other preclinical and clinical studies have been conducted to determine the potential benefits of cannabinoids in NMDs. This review article aims to summarize and provide an unbiased point of view on the current knowledge about the use of cannabinoids, endocannabinoids, and synthetic analogs in NMDs, drawing from an array of compelling studies.
Collapse
Affiliation(s)
- Fabio Arturo Iannotti
- Institute of Biomolecular Chemistry (ICB), National Research Council of Italy (CNR), 80078 Pozzuoli, NA, Italy
| |
Collapse
|
2
|
Castro-da-Silva MLRD, Farias-de-França AP, Ravazoli I, Oliveira KC, Orsi VDC, Yoshida EH, Tavares RVDS, Oshima-Franco Y. Multi targets of cannabidiol (CBD) on skeletal mammalian and avian neuromuscular preparations. Nat Prod Res 2023:1-10. [PMID: 38054804 DOI: 10.1080/14786419.2023.2290675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Cannabidiol (CBD) has been used in diseases that affect the central nervous system. Its effects on the peripheral synapses are of great interest, since endocannabinoid receptors are expressed in muscles. CBD (0.3 mM) was analysed using mammalian and avian neuromuscular preparations, through myographic techniques in complementary protocols. Mammalian cells were examined by light microscopy while exogenous acetylcholine (40 µM) and potassium chloride (100 mM) were added into avian preparations, before and at the end of experiments. Pharmacological tools such as atropine (2 µM), polyethylene glycol (PEG 400, 20 µM), Ca2+ (1.8 mM), F55-6 (20 µg/mL), and nifedipine (1.3 mM) were assessed with CBD. In mice, CBD causes a facilitatory effect and paralysis, whereas in avian, paralysis. Concluding, CBD is responsible for activated or inhibited channels, for ACh release via muscarinic receptor modulation, and by the inhibition of nicotinic receptors leading to neuromuscular blockade, with no damage to striated muscle cells.
Collapse
Affiliation(s)
| | | | | | | | - Valéria de Campos Orsi
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| | - Edson Hideaki Yoshida
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| | | | - Yoko Oshima-Franco
- Post-Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, Brazil
| |
Collapse
|
3
|
Haddad M, Cherchi F, Alsalem M, Al-saraireh YM, Madae’en S. Adenosine Receptors as Potential Therapeutic Analgesic Targets. Int J Mol Sci 2023; 24:13160. [PMID: 37685963 PMCID: PMC10487796 DOI: 10.3390/ijms241713160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Pain represents an international burden and a major socio-economic public health problem. New findings, detailed in this review, suggest that adenosine plays a significant role in neuropathic and inflammatory pain, by acting on its metabotropic adenosine receptors (A1AR, A2AAR, A2BAR, A3AR). Adenosine receptor ligands have a practical translational potential based on the favorable efficacy and safety profiles that emerged from clinical research on various agonists and antagonists for different pathologies. The present review collects the latest studies on selected adenosine receptor ligands in different pain models. Here, we also covered the many hypothesized pathways and the role of newly synthesized allosteric adenosine receptor modulators. This review aims to present a summary of recent research on adenosine receptors as prospective therapeutic targets for a range of pain-related disorders.
Collapse
Affiliation(s)
- Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Mohammad Alsalem
- School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Yousef M. Al-saraireh
- Department of Pharmacology, Faculty of Medicine, Mutah University, P.O. Box 7, Al-Karak 61710, Jordan;
| | - Saba Madae’en
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| |
Collapse
|
4
|
Castillo-Ferrán N, Junco-Rodriguez JM, Lestayo-O'Farrill Z, Robinson-Agramonte MDLA, Camejo-León Z, Gómez-Suárez HJ, Salinas-Olivares M, Antiguas-Valdez E, Falcón-Lamazares E, Siniscalco D. A Possible Case of Centronuclear Myopathy: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1112. [PMID: 37374315 DOI: 10.3390/medicina59061112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Congenital myopathies (CMs) are a group of diseases that primarily affect the muscle fiber, especially the contractile apparatus and the different components that condition its normal functioning. They present as muscle weakness and hypotonia at birth or during the first year of life. Centronuclear CM is characterized by a high incidence of nuclei located centrally and internally in muscle fibers. Clinical case: a 22-year-old male patient with symptoms of muscle weakness since early childhood, with difficulty in performing physical activity according to his age, with the presence of a long face, a waddling gait, and a global decrease in muscle mass. Electromyography was performed, showing a neurogenic pattern and not the expected myopathic one, neuroconduction with reduced amplitude of the motor potential of the peroneal nerve and axonal and myelin damage of the posterior tibial nerves. The microscopic study of the studied striated muscle fragments stained with hematoxylin-eosin and Masson's trichrome showed the presence of fibers with central nuclei, diagnosing CM. The patient meets most of the description for CM, with involvement of all striated muscles, although it is important to note the neurogenic pattern present in this case, due to the denervation of damaged muscle fibers, which contain terminal axonal segments. Neuroconduction shows the involvement of motor nerves, but with normal sensory studies, axonal polyneuropathy is unlikely, due to normal sensory potentials. Different pathological findings have been described depending on the mutated gene in this disease, but all coincide with the presence of fibers with central nuclei for diagnosis by this means, which is so important in institutions where it is not possible to carry out genetic studies, and allowing early specific treatment, according to the stage through which the patient passes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy
| |
Collapse
|
5
|
Kalkan H, Pagano E, Paris D, Panza E, Cuozzo M, Moriello C, Piscitelli F, Abolghasemi A, Gazzerro E, Silvestri C, Capasso R, Motta A, Russo R, Di Marzo V, Iannotti FA. Targeting gut dysbiosis against inflammation and impaired autophagy in Duchenne muscular dystrophy. EMBO Mol Med 2023; 15:e16225. [PMID: 36594243 PMCID: PMC9994484 DOI: 10.15252/emmm.202216225] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Nothing is known about the potential implication of gut microbiota in skeletal muscle disorders. Here, we provide evidence that fecal microbiota composition along with circulating levels of short-chain fatty acids (SCFAs) and related metabolites are altered in the mdx mouse model of Duchenne muscular dystrophy (DMD) compared with healthy controls. Supplementation with sodium butyrate (NaB) in mdx mice rescued muscle strength and autophagy, and prevented inflammation associated with excessive endocannabinoid signaling at CB1 receptors to the same extent as deflazacort (DFZ), the standard palliative care for DMD. In LPS-stimulated C2C12 myoblasts, NaB reduces inflammation, promotes autophagy, and prevents dysregulation of microRNAs targeting the endocannabinoid CB1 receptor gene, in a manner depending on the activation of GPR109A and PPARγ receptors. In sum, we propose a novel disease-modifying approach in DMD that may have benefits also in other muscular dystrophies.
Collapse
Affiliation(s)
- Hilal Kalkan
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Ester Pagano
- Department of Pharmacy, University Federico II of Naples, Italy
| | - Debora Paris
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | | | | | - Claudia Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Armita Abolghasemi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Elisabetta Gazzerro
- Unit of Muscle Research, Experimental and Clinical Research Center Charité Universitätsmedizin and Max Delbrück Research Center, Berlin, Germany
| | - Cristoforo Silvestri
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Andrea Motta
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Roberto Russo
- Department of Pharmacy, University Federico II of Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec and Institut Sur la Nutrition et Les Aliments Fonctionnels, Centre NUTRISS, Université Laval, Quebec City, QC, Canada
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| |
Collapse
|
6
|
Fan D, Chen X, Fa W, Liang X, Han X, Wang Y, Cong L, Liang Y, Welmer AK, Hou T, Du Y, Qiu C. Cardiovascular health profiles, systemic inflammation, and physical function in older adults: A population-based study. Arch Gerontol Geriatr 2023; 109:104963. [PMID: 36804699 DOI: 10.1016/j.archger.2023.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
We examined the association of modifiable cardiovascular health (CVH) metrics with physical function among rural older adults in China and the potential role of inflammatory mechanisms in the association. This study included 3733 stroke- and dementia-free participants (age ≥65 years; 56.9% women) in the baseline survey of a multimodal intervention study in rural China. From March-September 2018, data were collected via face-to-face interviews, clinical assessments, and laboratory tests. The Short Performance Physical Battery (SPPB) test was performed to assess physical function. We defined six modifiable CVH metrics according to the modified American Heart Association's recommendations. Serum interleukin (IL)-6 was measured in a subsample (n = 1156). Data were analyzed with multiple general linear and logistic regression models and structural equation modeling. Poor physical function (SPPB score ≤9) was defined in 1443 participants. Ideal CVH (vs. poor CVH) was associated with multivariable-adjusted odds ratio of 0.60 (95%CI 0.48-0.75) for poor physical function. Ideal CVH was significantly associated with higher scores on balance, chair stand, and walking speed tests (all p < 0.05). Moreover, ideal CVH profile was associated with lower serum IL-6 (multivariable-adjusted β=-0.04; 95% CI -0.06, -0.01). Mediation analysis revealed that serum IL-6 accounted for 14% of the association of CVH with total SPPB score and 10% of the association with walking speed score (p < 0.05). This study suggests that an ideal CVH profile is associated with better physical function among stroke- and dementia-free older adults, partly via inflammatory mechanisms. The preventive implications of these findings warrant further investigation in cohort studies.
Collapse
Affiliation(s)
- Dong Fan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; International Medical Services, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China
| | - Xia Chen
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China
| | - Wenxin Fa
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China
| | - Xiaoyan Liang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China
| | - Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China
| | - Yajun Liang
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Karin Welmer
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Women's Health and Allied Health Professionals Theme, Medical Unit Medical Psychology, Karolinska University Hospital, Stockholm, Sweden
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Centre for Neurological Diseases, Jinan, Shandong, PR China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, PR China.
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, PR China; Aging Research Center and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute-Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Li M, Zhang K, Li T, Chen Y, Zang H, Hu Y, Yao W. Sciatic Nerve Block Combined with Flurbiprofen Inhibits Spinal Cord Inflammation and Improves Postoperative Pain in Rats with Plantar Incision. J Pain Res 2023; 16:1533-1546. [PMID: 37193359 PMCID: PMC10182802 DOI: 10.2147/jpr.s404226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Background and Purpose Peripheral nerve block is often used to relieve postoperative pain. But the effect of nerve block on inflammatory response is not fully understood. Spinal cord is the primary center of pain processing. This study is to investigate the effect of single sciatic nerve block on the inflammatory response of the spinal cord in rats with plantar incision and the combined effect with flurbiprofen. Methods The plantar incision was used to establish a postoperative pain model. Single sciatic nerve block, intravenous flurbiprofen or the combination of both were used for intervention. The sensory and motor functions after nerve block and incision were evaluated. The changes of IL-1β, IL-6, TNF-α, microglia and astrocytes in the spinal cord were examined by qPCR and immunofluorescence respectively. Results Sciatic nerve block with 0.5% ropivacaine in rats induced sensory block for 2h and motor block for 1.5h. In the rats with plantar incision, the single sciatic nerve block did not alleviate postoperative pain or inhibit the activation of spinal microglia and astrocytes, but the levels of IL-1β and IL-6 in spinal cord were decreased when the nerve block wore off. The combined effect of a single sciatic nerve block and intravenous flurbiprofen not only decreased the levels of IL-1β, IL-6, and TNF-α, but also relieved the pain and alleviated the activation of microglia and astrocytes. Conclusion The single sciatic nerve block cannot improve postoperative pain or inhibit the activation of spinal cord glial cells, but can reduce the expression of spinal inflammatory factors. Nerve block combined with flurbiprofen can inhibit spinal cord inflammation and improve postoperative pain. This study provides a reference for rational clinical application of nerve block.
Collapse
Affiliation(s)
- Meihong Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Kaiwen Zhang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Ting Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
| | - Yuye Chen
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hu Zang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Yingjie Hu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Wenlong Yao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Correspondence: Wenlong Yao, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China, Tel +86 13720271159, Email
| |
Collapse
|
8
|
Schouten M, Dalle S, Koppo K. Molecular Mechanisms Through Which Cannabidiol May Affect Skeletal Muscle Metabolism, Inflammation, Tissue Regeneration, and Anabolism: A Narrative Review. Cannabis Cannabinoid Res 2022; 7:745-757. [PMID: 36454174 DOI: 10.1089/can.2022.0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: Cannabidiol (CBD), a nonintoxicating constituent of the cannabis plant, recently gained a lot of interest among athletes, since it is no longer considered as a prohibited substance by the World Anti-Doping Agency. The increasing prevalence of CBD use among athletes is driven by a perceived improvement in muscle recovery and a reduction in pain. However, compelling evidence from intervention studies is lacking and the precise mechanisms through which CBD may improve muscle recovery remain unknown. This highlights the need for more scientific studies and an evidence-based background. In the current review, the state-of-the-art knowledge on the effects of CBD on skeletal muscle tissue is summarized with special emphasis on the underlying mechanisms and molecular targets. More specifically, the large variety of receptor families that are believed to be involved in CBD's physiological effects are discussed. Furthermore, in vivo and in vitro studies that investigated the actual effects of CBD on skeletal muscle metabolism, inflammation, tissue regeneration, and anabolism are summarized, together with the functional effects of CBD supplementation on muscle recovery in human intervention trials. Overall, CBD was effective to increase the expression of metabolic regulators in muscle of obese mice (e.g., Akt, glycogen synthase kinase-3). CBD treatment in rodents reduced muscle inflammation following eccentric exercise (i.e., nuclear factor kappa B [NF-κB]), in a model of muscle dystrophy (e.g., interleukin-6, tumor necrosis factor alpha) and of obesity (e.g., COX-2, NF-κB). In addition, CBD did not affect in vitro or in vivo muscle anabolism, but improved satellite cell differentiation in dystrophic muscle. In humans, there are some indications that CBD supplementation improved muscle recovery (e.g., creatine kinase) and performance (e.g., squat performance). However, CBD doses were highly variable (between 16.7 and 150 mg) and there are some methodological concerns that should be considered. Conclusion: CBD has the prospective to become an adequate supplement that may improve muscle recovery. However, this research domain is still in its infancy and future studies addressing the molecular and functional effects of CBD in response to exercise are required to further elucidate the ergogenic potential of CBD.
Collapse
Affiliation(s)
- Moniek Schouten
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Kim YK. Comparing the long non-coding RNA expression profiles of skeletal muscle and kidney tissues from patients with diabetes. PLoS One 2022; 17:e0274794. [PMID: 36155986 PMCID: PMC9512191 DOI: 10.1371/journal.pone.0274794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background Diabetes causes the dysregulation of several organs, and these effects are often closely associated with changes in the expression of long non-coding RNAs (lncRNAs), a group of non-coding RNAs, within these tissues. Previous studies have described a variety of changes in the expression profile of several lncRNAs from different organs in response to the pathogenesis of diabetes. However, none of these studies compared the expression profiles of these lncRNAs between these organs. This study was designed to identify common and specific lncRNAs involved in the progression of diabetes in the skeletal muscles and kidneys. Methods Publicly available RNA sequencing data of diabetic patients was obtained from the Gene Expression Omnibus database. By analyzing the expression of lncRNAs in these datasets, differentially expressed lncRNAs in each tissue between non-diabetic and diabetic patients were identified. To identify any lncRNAs changed in common in both kidney and muscle tissues, those lncRNAs that are significantly dysregulated in both datasets were selected. Results These evaluations identified a series of novel lncRNAs unique to each organ and several transcripts that were common to both skeletal muscle and kidney tissues in these patients. Interestingly, the genomic location of these lncRNAs suggests that they reside in close proximity to several protein-coding genes known to be related to diabetes suggesting that these lncRNAs may have a regulatory relationship with their neighboring genes. Conclusion These results offer valuable insights into the role of lncRNAs during the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
- * E-mail:
| |
Collapse
|
10
|
Luo P, Liu L, Hou W, Xu K, Xu P. Gene Set Enrichment Analysis Detected Immune Cell-Related Pathways Associated with Primary Sclerosing Cholangitis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2371347. [PMID: 36060137 PMCID: PMC9439919 DOI: 10.1155/2022/2371347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Aim To explore various immune cell-related causal pathways for primary sclerosing cholangitis (PSC). Methods Immune cell-related pathway association study was conducted via integrative analysis of PSC GWAS summary and five immune cell-related eQTL datasets. The GWAS summary data of PSC was driven from 4,796 PSC cases and 19,955 healthy controls. The eQTL datasets of CD4+ T cells, CD8+ T cells, B cells, natural killer cells (NK), monocytes, and peripheral blood cells (PB) were collected from recently eQTL study. The PSC GWAS summary dataset was first aligned with eQTL datasets of six blood cells to obtain the GWAS summary data at overlapped eQTL loci, separately. For each type of cell, the obtained PSC GWAS summary dataset of eQTLs was subjected to pathway enrichment analysis. 853 biological pathways from Kyoto Encyclopedia of Genes and Genomes, BioCarta, and Reactome pathway databases were analyzed. Results We identified 36 pathways for B cells, 33 pathways for CD4+ T cells, 28 pathways for CD8+ T cells, 33 pathways for monocytes (MN), 35 pathways for NK cells, and 33 for PB cells (all empirical P values <5.0 × 10-5). Comparing the pathway analysis results detected 25 pathways shared by five immune cells, such as KEGG_CELL_ADHESION_MOLECULES_CAMS (P value <5.0 × 10-5) and REACTOME_MHC_CLASS_II_ANTIGEN_ PRESENTATION (P value <5.0 × 10-5). Several cell-specific pathways were also identified, including BIOCARTA_INFLAM_PATHWAY (P value <5 × 10-5) for B cell. Conclusion Our study holds potential to identify novel candidate causal pathways and provides clues for revealing the complex genetic mechanism of PSC.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Lin Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Weikun Hou
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, China
| |
Collapse
|
11
|
Mauceri D. Role of Epigenetic Mechanisms in Chronic Pain. Cells 2022; 11:cells11162613. [PMID: 36010687 PMCID: PMC9406853 DOI: 10.3390/cells11162613] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/11/2022] Open
Abstract
Pain is an unpleasant but essential-to-life sensation, usually resulting from tissue damage. When pain persists long after the injury has resolved, it becomes pathological. The precise molecular and cellular mechanisms causing the transition from acute to chronic pain are not fully understood. A key aspect of pain chronicity is that several plasticity events happen along the neural pathways involved in pain. These long-lasting adaptive changes are enabled by alteration in the expression of relevant genes. Among the different modulators of gene transcription in adaptive processes in the nervous system, epigenetic mechanisms play a pivotal role. In this review, I will first outline the main classes of epigenetic mediators and then discuss their implications in chronic pain.
Collapse
Affiliation(s)
- Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Krzyżewska A, Baranowska-Kuczko M, Jastrząb A, Kasacka I, Kozłowska H. Cannabidiol Improves Antioxidant Capacity and Reduces Inflammation in the Lungs of Rats with Monocrotaline-Induced Pulmonary Hypertension. Molecules 2022; 27:molecules27103327. [PMID: 35630804 PMCID: PMC9143935 DOI: 10.3390/molecules27103327] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
Cannabidiol (CBD) is a plant-derived compound with antioxidant and anti-inflammatory properties. Pulmonary hypertension (PH) is still an incurable disease. CBD has been suggested to ameliorate monocrotaline (MCT)-induced PH, including reduction in right ventricular systolic pressure (RVSP), a vasorelaxant effect on pulmonary arteries and a decrease in the white blood cell count. The aim of our study was to investigate the effect of chronic administration of CBD (10 mg/kg daily for 21 days) on the parameters of oxidative stress and inflammation in the lungs of rats with MCT-induced PH. In MCT-induced PH, we found a decrease in total antioxidant capacity (TAC) and glutathione level (GSH), an increase in inflammatory parameters, e.g., tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), nuclear factor kappa B (NF-κB), monocyte chemoattractant protein-1 (MCP-1), and cluster of differentiation 68 (CD68), and the overexpression of cannabinoid receptors type 1 and 2 (CB1-Rs, CB2-Rs). Administration of CBD increased TAC and GSH concentrations, glutathione reductase (GSR) activity, and decreased CB1-Rs expression and levels of inflammatory mediators such as TNF-α, IL -1β, NF-κB, MCP-1 and CD68. In conclusion, CBD has antioxidant and anti-inflammatory effects in MCT-induced PH. CBD may act as an adjuvant therapy for PH, but further detailed preclinical and clinical studies are recommended to confirm our promising results.
Collapse
Affiliation(s)
- Anna Krzyżewska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland; (M.B.-K.); (H.K.)
- Correspondence:
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland; (M.B.-K.); (H.K.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicz 2D, 15-222 Bialystok, Poland;
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, Mickiewicz 2C, 15-222 Bialystok, Poland;
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Mickiewicz 2A, 15-222 Bialystok, Poland; (M.B.-K.); (H.K.)
| |
Collapse
|
13
|
Sihag J, Di Marzo V. (Wh)olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N)utrition (WHEN) to Curb Obesity and Related Disorders. Lipids Health Dis 2022; 21:9. [PMID: 35027074 PMCID: PMC8759188 DOI: 10.1186/s12944-021-01609-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023] Open
Abstract
The discovery of the endocannabinoidome (eCBome) is evolving gradually with yet to be elucidated functional lipid mediators and receptors. The diet modulates these bioactive lipids and the gut microbiome, both working in an entwined alliance. Mounting evidence suggests that, in different ways and with a certain specialisation, lipid signalling mediators such as N-acylethanolamines (NAEs), 2-monoacylglycerols (2-MAGs), and N-acyl-amino acids (NAAs), along with endocannabinoids (eCBs), can modulate physiological mechanisms underpinning appetite, food intake, macronutrient metabolism, pain sensation, blood pressure, mood, cognition, and immunity. This knowledge has been primarily utilised in pharmacology and medicine to develop many drugs targeting the fine and specific molecular pathways orchestrating eCB and eCBome activity. Conversely, the contribution of dietary NAEs, 2-MAGs and eCBs to the biological functions of these molecules has been little studied. In this review, we discuss the importance of (Wh) olistic (E)ndocannabinoidome-Microbiome-Axis Modulation through (N) utrition (WHEN), in the management of obesity and related disorders.
Collapse
Affiliation(s)
- Jyoti Sihag
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Department of Foods and Nutrition, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India.
| | - Vincenzo Di Marzo
- Faculty of Medicine, University of Laval, Quebec, Canada.
- Faculty of Agriculture and Food Sciences, University of Laval, Quebec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), University of Laval, Quebec, Canada.
- University Institute of Cardiology and Pneumology, Quebec, Canada.
- Institute of Nutrition and Functional Foods (INAF) and Centre Nutrition, Santé et Société (NUTRISS), University of Laval, Quebec, Canada.
- Institute of Biomolecular Chemistry of the National Research Council (ICB-CNR), Naples, Italy.
- Endocannabinoid Research Group, Naples, Italy.
- Joint International Research Unit between the Italian National Research Council (CNR) and University of Laval, for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec, Canada.
| |
Collapse
|
14
|
Haddad M. The Impact of CB1 Receptor on Nuclear Receptors in Skeletal Muscle Cells. PATHOPHYSIOLOGY 2021; 28:457-470. [PMID: 35366244 PMCID: PMC8830471 DOI: 10.3390/pathophysiology28040029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022] Open
Abstract
Cannabinoids are abundant signaling compounds; their influence predominantly arises via engagement with the principal two G-protein-coupled cannabinoid receptors, CB1 and CB2. One suggested theory is that cannabinoids regulate a variety of physiological processes within the cells of skeletal muscle. Earlier publications have indicated that expression of CB1 receptor mRNA and protein has been recognized within myotubes and tissues of skeletal muscle from both murines and humans, thus representing a potentially significant pathway which plays a role in the control of skeletal muscular activities. The part played by CB1 receptor activation or inhibition with respect to these functions and relevant to targets in the periphery, especially skeletal muscle, is not fully delineated. Thus, the aim of the current research was to explore the influence of CB1 receptor stimulation and inhibition on downstream signaling of the nuclear receptor, NR4A, which regulates the immediate impacts of arachidonyl-2′-chloroethylamide (ACEA) and/or rimonabant in the cells of skeletal muscle. Murine L6 skeletal muscle cells were used in order to clarify additional possible molecular signaling pathways which contribute to alterations in the CB1 receptor. Skeletal muscle cells have often been used; it is well-documented that they express cannabinoid receptors. Quantitative real-time probe-based polymerase chain reaction (qRT-PCR) assays are deployed in order to assess the gene expression characteristics of CB1 receptor signaling. In the current work, it is demonstrated that skeletal muscle cells exhibit functional expression of CB1 receptors. This can be deduced from the qRT-PCR assays; triggering CB1 receptors amplifies both NR4A1 and NR4A3 mRNA gene expression. The impact of ACEA is inhibited by the selective CB1 receptor antagonist, rimonabant. The present research demonstrated that 10 nM of ACEA notably amplified mRNA gene expression of NR4A1 and NR4A3; this effect was suppressed by the addition of 100 nM rimonabant. Furthermore, the CB1 receptor antagonist led to the downregulation of mRNA gene expression of NR4A1, NR4A2 and NR4A3. In conclusion, in skeletal muscle, CB1 receptors were recognized to be important moderators of NR4A1 and NR4A3 mRNA gene expression; these actions may have possible clinical benefits. Thus, in skeletal muscle cells, a possible physiological expression of CB1 receptors was identified. It is as yet unknown whether these CB1 receptors contribute to pathways underlying skeletal muscle biological function and disease processes. Further research is required to fully delineate their role(s).
Collapse
Affiliation(s)
- Mansour Haddad
- Department of Clinical Pharmacy, Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| |
Collapse
|