1
|
Peng Y, Xiong R, Wang B, Chen X, Ning Y, Zhao Y, Yang N, Zhang J, Li C, Zhou Y, Li P. The Essential Role of Angiogenesis in Adenosine 2A Receptor Deficiency-mediated Impairment of Wound Healing Involving c-Ski via the ERK/CREB Pathways. Int J Biol Sci 2024; 20:4532-4550. [PMID: 39247808 PMCID: PMC11380447 DOI: 10.7150/ijbs.98856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
Adenosine receptor-mediated signaling, especially adenosine A2A receptor (A2AR) signaling, has been implicated in wound healing. However, the role of endothelial cells (ECs) in A2AR-mediated wound healing and the mechanism underlying this effect are still unclear. Here, we showed that the expression of A2AR substantially increased after wounding and was especially prominent in granulation tissue. The delaying effects of A2AR knockout (KO) on wound healing are due mainly to the effect of A2AR on endothelial cells, as shown with A2AR-KO and EC-A2AR-KO mice. Moreover, the expression of c-Ski, which is especially prominent in CD31-positive cells in granulation tissue, increased after wounding and was decreased by both EC-A2AR KO and A2AR KO. In human microvascular ECs (HMECs), A2AR activation induced EC proliferation, migration, tubule formation and c-Ski expression, whereas c-Ski depletion by RNAi abolished these effects. Mechanistically, A2AR activation promotes the expression of c-Ski through an ERK/CREB-dependent pathway. Thus, A2AR-mediated angiogenesis plays a critical role in wound healing, and c-Ski is involved mainly in the regulation of angiogenesis by A2AR via the ERK/CREB pathway. These findings identify A2AR as a therapeutic target in wound repair and other angiogenesis-dependent tissue repair processes.
Collapse
Affiliation(s)
- Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Renping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Bo Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yalei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Jing Zhang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Changhong Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Yuanguo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Zhilu, Chongqing 400042, People's Republic of China
| |
Collapse
|
2
|
Zhang S, Li J, Li C, Xie X, He J, Ling F, Li B, Wu H, Li Z, Zhen J, Liu G. CD73-positive pediatric urethral mesenchymal stem-like cell-derived small extracellular vesicles stimulate angiogenesis. Regen Ther 2024; 25:77-84. [PMID: 38111468 PMCID: PMC10727923 DOI: 10.1016/j.reth.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction Angiogenesis plays an important role in the repair of urethral injury, and stem cells and their secretomes can promote angiogenesis. We obtained pediatric urethral mesenchymal stem-like cells (PU-MSLCs) in an earlier study. This project studied the pro-angiogenic effect of PU-MSLC-derived small extracellular vesicles (PUMSLC-sEVs) and the underlying mechanisms. Materials and methods PUMSLCs and PUMSLC-sEVs were cultivated and identified. Then, biological methods such as the ethynyl deoxyuridine (EdU) incorporation assay, Cell Counting Kit-8 (CCK-8) assay, scratch wound assay, Transwell assay, and tube formation assay were used to study the effect of PUMSLC-sEVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). We explored whether the proangiogenic effect of PUMSLC-sEVs is related to CD73 and whether adenosine (ADO, a CD73 metabolite) promoted angiogenesis. GraphPad Prism 8 software was used for data analysis. Results We observed that PUMSLC-sEVs significantly promoted the proliferation, migration, and tube-forming abilities of HUVECs. PUMSLC-sEVs delivered CD73 molecules to HUVECs to promote angiogenesis. The angiogenic ability of HUVECs was enhanced after treatment with extracellular ADO produced by CD73, and PUMSLC-sEVs further promoted angiogenesis by activating Adenosine Receptor A2A (A2AR). Conclusions These observations suggest that PUMSLC-sEVs promote angiogenesis, possibly through activation of the CD73/ADO/A2AR signaling axis.
Collapse
Affiliation(s)
- Shilin Zhang
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jierong Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Chunjing Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Xumin Xie
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jun He
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Fengsheng Ling
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Bowei Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Huayan Wu
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Zhilin Li
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Jianwei Zhen
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| | - Guoqing Liu
- Department of Urology, Foshan Maternity & Child Healthcare Hospital, Foshan 528000, China
| |
Collapse
|
3
|
Wang D, Diao S, Zhou X, Zhou J, Liu Y. A new method regulates bone fracture tissue exosome lncRNA-mRNA to promote mesenchymal stem cell proliferation and migration. Injury 2024; 55:111210. [PMID: 38006783 DOI: 10.1016/j.injury.2023.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Post-injury adaptation (PIA) is a simple and convenient method to promote bone healing, but its mechanism is unclear. This study was to discuss the role of fracture site tissue exosomes lncRNAs-mRNAs networks on PIA promoting bone mesenchymal stem cells (BMSCs) proliferation and migration. Firstly, the effects of PIA accelerating BMSCs proliferation and migration were confirmed by rat fracture model and bone fracture environment in vitro. Besides, the fracture site tissue exosomes were isolated and authenticated. Then the tissue exosomes were the key factor in PIA promoting BMSCs proliferation and migration authenticated by in vitro and in vivo experiments. The high throughput sequencing and RT-PCR were used to analyze the tissue exosomes lncRNAs-mRNAs networks. It was found that PIA treatment upregulated 118 lncRNAs, 295 mRNAs, and downregulated 111 lncRNAs, 2706 mRNAs in tissue exosomes. A total 12,211 genes were the target genes. Akt1, Actb and Uba52 were the hub mRNAs in tissue exosomes. In additions, tissue-derived exosomes of PIA treated rats upregulated 49 genes, 3 lncRNAs and downregulated 28 genes, 1 lncRNA in BMSCs. Kif11 was the hub gene. Overall, PIA promoted BMSCs proliferation and migration in the early stage of fracture healing, which was closely related to the fracture site tissue exosomes. Akt1, Actb and Uba52 were the hub mRNAs in the exosomes. Besides, Kif11 might be the key gene in BMSC regulated by tissue-derived exosomes of PIA treated rats.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Shuo Diao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaobin Zhou
- Third Department of Traumatology, The Third Hospital of Shijiazhuang, Shijiazhuang 050000, China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
4
|
Wang P, Shao W, Li Z, Wang B, Lv X, Huang Y, Feng Y. Non-bone-derived exosomes: a new perspective on regulators of bone homeostasis. Cell Commun Signal 2024; 22:70. [PMID: 38273356 PMCID: PMC10811851 DOI: 10.1186/s12964-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Accumulating evidence indicates that exosomes help to regulate bone homeostasis. The roles of bone-derived exosomes have been well-described; however, recent studies have shown that some non-bone-derived exosomes have better bone targeting ability than bone-derived exosomes and that their performance as a drug delivery vehicle for regulating bone homeostasis may be better than that of bone-derived exosomes, and the sources of non-bone-derived exosomes are more extensive and can thus be better for clinical needs. Here, we sort non-bone-derived exosomes and describe their composition and biogenesis. Their roles and specific mechanisms in bone homeostasis and bone-related diseases are also discussed. Furthermore, we reveal obstacles to current research and future challenges in the practical application of exosomes, and we provide potential strategies for more effective application of exosomes for the regulation of bone homeostasis and the treatment of bone-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
5
|
Newman H, Varghese S. Extracellular adenosine signaling in bone health and disease. Curr Opin Pharmacol 2023; 70:102378. [PMID: 37044008 PMCID: PMC10247430 DOI: 10.1016/j.coph.2023.102378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/29/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
Purinergic signaling is a key molecular pathway in the maintenance of bone health and regeneration. P1 receptor signaling, which is activated by extracellular adenosine, has emerged as a key metabolic pathway that regulates bone tissue formation, function, and homeostasis. Extracellular adenosine is mainly produced by ectonucleotidases, and alterations in the function of these enzymes or compromised adenosine generation can result in bone disorders, such as osteoporosis and impaired fracture healing. This mini review discusses the key role played by adenosine in bone health and how its alterations contribute to bone diseases, as well as potential therapeutic applications of exogenous adenosine to combat bone diseases like osteoporosis and injury.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Wang D, Liu Y, Diao S, Shan L, Zhou J. Long Non-Coding RNAs Within Macrophage-Derived Exosomes Promote BMSC Osteogenesis in a Bone Fracture Rat Model. Int J Nanomedicine 2023; 18:1063-1083. [PMID: 36879890 PMCID: PMC9985426 DOI: 10.2147/ijn.s398446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Purpose To investigate the effect of macrophage exosomal long non-coding (lnc)RNAs on bone mesenchymal stem cell (BMSC) osteogenesis and the associated mechanism. Methods Rat BMSCs and spleen macrophages were co-cultured with serum derived from the fracture microenvironment of rat tibia. BMSC osteogenesis was evaluated using Alizarin red staining and the expression of BMP-2, RUNX2, OPN, and OC mRNA. BMSC osteogenesis was evaluated after co-culture with macrophages stimulated using hypoxic conditions or colony-stimulating factor (CSF). The uptake of macrophage-derived exosomes by BMSCs was evaluated using the exosome uptake assay. High-throughput sequencing and bioinformatics analyses were performed to identify key lncRNAs in the macrophage exosomes. The effect of lncRNA expression levels on BMSC osteogenesis was also assessed using a lncRNA overexpression plasmid and siRNA technology. M1 and M2 macrophages were distinguished using flow cytometry and the key exosomal lncRNA was detected by in situ hybridization. Results In the fracture microenvironment, macrophages (stimulated using either hypoxia or CSF) significantly increased the osteogenic ability of BMSCs. We showed that BMSCs assimilated macrophage-derived vesicles and that the inhibition of exosomal secretion significantly attenuated the macrophage-mediated induction of BMSC osteogenesis. The hypoxia condition led to the up-regulation of 310 lncRNAs and the down-regulation of 575 lncRNAs in macrophage exosomes, while CSF stimulation caused the up-regulation of 557 lncRNAs and the down-regulation of 407 lncRNAs. In total, 108 lncRNAs were co-up-regulated and 326 lncRNAs were co-down-regulated under both conditions. We eventually identified LOC103691165 as a key lncRNA that promoted BMSC osteogenesis and was expressed at similar levels in both M1 and M2 macrophages. Conclusion In the fracture microenvironment, M1 and M2 macrophages promoted BMSC osteogenesis by secreting exosomes containing LOC103691165.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Shuo Diao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Lei Shan
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| |
Collapse
|
7
|
Liu N, Dong J, Li L, Liu F. Osteoimmune Interactions and Therapeutic Potential of Macrophage-Derived Small Extracellular Vesicles in Bone-Related Diseases. Int J Nanomedicine 2023; 18:2163-2180. [PMID: 37131544 PMCID: PMC10149074 DOI: 10.2147/ijn.s403192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Due to the aging of the global population, the burden of bone-related diseases has increased sharply. Macrophage, as indispensable components of both innate immune responses and adaptive immunity, plays a considerable role in maintaining bone homeostasis and promoting bone establishment. Small extracellular vesicles (sEVs) have attracted increasing attention because they participate in cell cross-talk in pathological environments and can serve as drug delivery systems. In recent years, an increasing number of studies have expanded our knowledge about the effects of macrophage-derived sEVs (M-sEVs) in bone diseases via different forms of polarization and their biological functions. In this review, we comprehensively describe on the application and mechanisms of M-sEVs in various bone diseases and drug delivery, which may provide new perspectives for treating and diagnosing human bone disorders, especially osteoporosis, arthritis, osteolysis, and bone defects.
Collapse
Affiliation(s)
- Nan Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Jinlei Dong
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Lianxin Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
- Correspondence: Fanxiao Liu, Department of Orthopedics, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China, Tel/Fax +86-0531-68773195, Email
| |
Collapse
|
8
|
Chen L, Yu C, Xiong Y, Chen K, Liu P, Panayi AC, Xiao X, Feng Q, Mi B, Liu G. Multifunctional hydrogel enhances bone regeneration through sustained release of Stromal Cell-Derived Factor-1α and exosomes. Bioact Mater 2022; 25:460-471. [PMID: 37056272 PMCID: PMC10087917 DOI: 10.1016/j.bioactmat.2022.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
Abstract
Fracture nonunion remains a great challenge for orthopedic surgeons. Fracture repair comprises of three phases, the inflammatory, repair and remodeling stage. Extensive advancements have been made in the field of bone repair, including development of strategies to balance the M1/M2 macrophage populations, and to improve osteogenesis and angiogenesis. However, such developments focused on only one or the latter two phases, while ignoring the inflammatory phase during which cell recruitment occurs. In this study, we combined Stromal Cell-Derived Factor-1α (SDF-1α) and M2 macrophage derived exosomes (M2D-Exos) with a hyaluronic acid (HA)-based hydrogel precursor solution to synthesize an injectable, self-healing, adhesive HA@SDF-1α/M2D-Exos hydrogel. The HA hydrogel demonstrated good biocompatibility and hemostatic ability, with the 4% HA hydrogels displaying great antibacterial activity against gram-negative E. coli and gram-positive S. aureus and Methicillin-resistant Staphylococcus aureus (MRSA). Synchronously and sustainably released SDF-1α and M2D-Exos from the HA@SDF-1α/M2D-Exos hydrogel enhanced proliferation and migration of human bone marrow mesenchymal stem cell (HMSCs) and Human Umbilical Vein Endothelial Cells (HUVECs), promoting osteogenesis and angiogenesis both in vivo and in vitro. Overall, the developed HA@ SDF-1α/M2D-Exos hydrogel was compatible with the natural healing process of fractures and provides a new modality for accelerating bone repair by coupling osteogenesis, angiogenesis, and resisting infection at all stages.
Collapse
|
9
|
Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep 2022; 17:101608. [PMID: 35992507 PMCID: PMC9385560 DOI: 10.1016/j.bonr.2022.101608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces. Cellular bioenergetic molecule ATP is released when cell is mechanically stimulated. ATP release is proportional to the amount of cellular damage. ATP diffusion and transformation to ADP indicates the proximity to the damage. Purinergic receptors form a network choreographing cell response to physical forces. Complete transformation of ATP to adenosine initiates the recovery phase.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
| | - Mahmoud S. Moussa
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nicholas Mikolajewicz
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Svetlana V. Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Corresponding author.
| |
Collapse
|
10
|
Zheng X, Wang J, Zhou J, Wang D. The Extract of Ilex cornuta Bark Promotes Bone Healing by Activating Adenosine A2A Receptor. Drug Des Devel Ther 2022; 16:2569-2587. [PMID: 35959419 PMCID: PMC9359408 DOI: 10.2147/dddt.s362238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Bone fracture is a common reason causing human disability. The delay union and nonunion rates are approximately 5–10% despite patients receiving active treatment. Currently, there is a limited number of drugs directly accelerating bone healing, especially direct extracts from plants. Moreover, the pharmacological effects of Ilex cornuta bark are still unknown. This study aimed to explore the effects and mechanisms of Ilex cornuta bark in bone healing. Methods and Results First, the promoting effects of Ilex cornuta bark on bone healing were verified by the mice femur fracture model as Ilex cornuta bark increased the callus formation and enhanced the biomechanical stability during the bone healing process. Second, the target gene of Ilex cornuta bark in bone healing identified by bioinformatics analysis and immunofluorescence validation was ADORA2A. Third, 410 main compound compositions of Ilex cornuta bark were explored by a non-target metabolomic analysis, where 190 of them were neg ion mode, and 220 were pos ion mode. Molecular docking was used to predict the regulatory effect of the compounds on adora2a (adenosine A2A receptor), and ursonic acid had the lowest binding energy with adora2a. Finally, nfkb1 was the transcription factor (TF) of adora2a, and ursonic acid also had the lowest binding energy by bioinformatic analysis and molecular docking. Conclusion Overall, Ilex cornuta bark water extract was a new plant extract on promoting bone healing; in addition, the mechanism of it might be activating adora2a though Nfkb1.
Collapse
Affiliation(s)
- Xi Zheng
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Jingyi Wang
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
- Correspondence: Dong Wang, Department of Orthopedics, Beijing Chaoyang hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, People’s Republic of China, Tel +86-13240718193, Email
| |
Collapse
|
11
|
Ye J, Liu X. Macrophage-Derived Small Extracellular Vesicles in Multiple Diseases: Biogenesis, Function, and Therapeutic Applications. Front Cell Dev Biol 2022; 10:913110. [PMID: 35832790 PMCID: PMC9271994 DOI: 10.3389/fcell.2022.913110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages (Mφs), as immune cells, play a pivotal role against pathogens and many diseases, such as cancer, inflammation, cardiovascular diseases, orthopedic diseases, and metabolic disorders. In recent years, an increasing number of studies have shown that small extracellular vesicles (sEVs) derived from Mφs (M-sEVs) play important roles in these diseases, suggesting that Mφs carry out their physiological functions through sEVs. This paper reviews the mechanisms underlying M-sEVs production via different forms of polarization and their biological functions in multiple diseases. In addition, the prospects of M-sEVs in disease diagnosis and treatment are described.
Collapse
Affiliation(s)
- Jingyao Ye
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuehong Liu
- The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
12
|
Meng F, Xue X, Yin Z, Gao F, Wang X, Geng Z. Research Progress of Exosomes in Bone Diseases: Mechanism, Diagnosis and Therapy. Front Bioeng Biotechnol 2022; 10:866627. [PMID: 35497358 PMCID: PMC9039039 DOI: 10.3389/fbioe.2022.866627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the global escalation of the aging process, the number of patients with bone diseases is increasing year by year. Currently, there are limited effective treatments for bone diseases. Exosome, as a vital medium in cell-cell communication, can mediate tissue metabolism through the paracrine transmission of various cargos (proteins, nucleic acids, lipids, etc.) carried by itself. Recently, an increasing number of researchers have proven that exosomes play essential roles in the formation, metabolism, and pathological changes of bone and cartilage. Because exosomes have the advantages of small size, rich sources, and low immunogenicity, they can be used not only as substitutes for the traditional treatment of bone diseases, but also as biomarkers for the diagnosis of bone diseases. This paper reviews the research progress of several kinds of cells derived-exosomes in bone diseases and provides a theoretical basis for further research and clinical application of exosomes in bone diseases in the future.
Collapse
Affiliation(s)
- Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xu Xue
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Fei Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, China,*Correspondence: Fei Gao, ; Xiuhui Wang, ; Zhen Geng,
| |
Collapse
|
13
|
Hung CT, Racine-Avila J, Pellicore MJ, Aaron R. Biophysical Modulation of Mesenchymal Stem Cell Differentiation in the Context of Skeletal Repair. Int J Mol Sci 2022; 23:ijms23073919. [PMID: 35409277 PMCID: PMC8998876 DOI: 10.3390/ijms23073919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
A prominent feature of the skeleton is its ability to remodel in response to biophysical stimuli and to repair under varied biophysical conditions. This allows the skeleton considerable adaptation to meet its physiological roles of stability and movement. Skeletal cells and their mesenchymal precursors exist in a native environment rich with biophysical signals, and they sense and respond to those signals to meet organismal demands of the skeleton. While mechanical strain is the most recognized of the skeletal biophysical stimuli, signaling phenomena also include fluid flow, hydrostatic pressure, shear stress, and ion-movement-related electrokinetic phenomena including, prominently, streaming potentials. Because of the complex interactions of these electromechanical signals, it is difficult to isolate the significance of each. The application of external electrical and electromagnetic fields allows an exploration of the effects of these stimuli on cell differentiation and extra-cellular matrix formation in the absence of mechanical strain. This review takes a distinctly translational approach to mechanistic and preclinical studies of differentiation and skeletal lineage commitment of mesenchymal cells under biophysical stimulation. In vitro studies facilitate the examination of isolated cellular responses while in vivo studies permit the observation of cell differentiation and extracellular matrix synthesis.
Collapse
Affiliation(s)
- Clark T. Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; (C.T.H.); (M.J.P.)
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| | - Jennifer Racine-Avila
- Department of Orthopedics, Alpert Medical School of Brown University, Providence, RI 02905, USA;
| | - Matthew J. Pellicore
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA; (C.T.H.); (M.J.P.)
| | - Roy Aaron
- Department of Orthopedics, Alpert Medical School of Brown University, Providence, RI 02905, USA;
- Correspondence: ; Tel.: +1-401-274-9660
| |
Collapse
|