1
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Chen K, He Y, Wang W, Yuan X, Carbone DP, Yang F. Development of new techniques and clinical applications of liquid biopsy in lung cancer management. Sci Bull (Beijing) 2024; 69:1556-1568. [PMID: 38641511 DOI: 10.1016/j.scib.2024.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 01/17/2024] [Indexed: 04/21/2024]
Abstract
Lung cancer is an exceedingly malignant tumor reported as having the highest morbidity and mortality of any cancer worldwide, thus posing a great threat to global health. Despite the growing demand for precision medicine, current methods for early clinical detection, treatment and prognosis monitoring in lung cancer are hampered by certain bottlenecks. Studies have found that during the formation and development of a tumor, molecular substances carrying tumor-related genetic information can be released into body fluids. Liquid biopsy (LB), a method for detecting these tumor-related markers in body fluids, maybe a way to make progress in these bottlenecks. In recent years, LB technology has undergone rapid advancements. Therefore, this review will provide information on technical updates to LB and its potential clinical applications, evaluate its effectiveness for specific applications, discuss the existing limitations of LB, and present a look forward to possible future clinical applications. Specifically, this paper will introduce technical updates from the prospectives of engineering breakthroughs in the detection of membrane-based LB biomarkers and other improvements in sequencing technology. Additionally, it will summarize the latest applications of liquid biopsy for the early detection, diagnosis, treatment, and prognosis of lung cancer. We will present the interconnectedness of clinical and laboratory issues and the interplay of technology and application in LB today.
Collapse
Affiliation(s)
- Kezhong Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Yue He
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Wenxiang Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China
| | - Xiaoqiu Yuan
- Peking University Health Science Center, Beijing 100191, China
| | - David P Carbone
- Thoracic Oncology Center, Ohio State University, Columbus 43026, USA.
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing 100044, China; Peking University People's Hospital Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Beijing 100044, China.
| |
Collapse
|
3
|
Zhao J, Ma C, Gan G, Xu X, Zhou J. Analysis of clinical and physical dosimetric factors that determine the outcome of severe acute radiation pneumonitis in lung cancer patients. Radiat Oncol 2023; 18:143. [PMID: 37644602 PMCID: PMC10463737 DOI: 10.1186/s13014-023-02304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE We conducted a retrospective statistical analysis of clinical and physical dosimetric factors of lung cancer patients who had previously undergone lung and/or mediastinal radiotherapy and died of or survived severe acute radiation pneumonitis (SARP). Our study was the first to reveal the heterogeneity in clinical factors, physical dosimetric factors, and SARP onset time that determined the clinical outcomes of lung cancer patients who developed SARP. MATERIALS AND METHODS The clinical characteristics, physical dosimetry factors, and SARP onset time of deceased and surviving patients were retrospectively analyzed. SPSS 20.0 was used for data analysis. Student's t-test was used for intergroup comparison, and a Mann-Whitney U test was used for data with skewed distribution. Qualitative data were represented using frequencies (%), and Fisher's exact test or χ2 test was used for intergroup comparison of nonparametric data. Binary logistic analysis was used for univariate and multivariate analyses. Differences with a P < 0.05 were considered statistically significant. RESULTS Univariate analysis revealed that the potential predictors of SARP death were as follows: ipsilateral lung V5 and V30, contralateral lung V5, V10, and V30, total lung V5, V10, and V30, mean lung dose, mean heart dose, and maximum spinal cord dose. Multivariate analysis showed that ipsilateral lung V5 and total lung V5 were predictors that determined the final outcome of SARP patients. In addition, we analyzed the time from the completion of radiotherapy to SARP onset, and found significant difference between the two groups. CONCLUSIONS There was no decisive correlation between clinical characteristics and SARP outcome (i.e., death or survival) in lung radiotherapy patients. Ipsilateral lung V5 and total lung V5 were independent predictors of death in SARP patients.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Chenying Ma
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guanghui Gan
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaoting Xu
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Juying Zhou
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
4
|
Tian X, Hou Y, Guo J, Wu H, Nie L, Wang H, Zhang Y, Lv Y. Effect of intensity modulated radiotherapy on lymphocytes in patients with esophageal squamous cell carcinoma and its clinical significance. Front Oncol 2023; 13:1096386. [PMID: 36959779 PMCID: PMC10028288 DOI: 10.3389/fonc.2023.1096386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Background Radiotherapy usually leads to a decrease in the total number of lymphocytes in patients with esophageal cancer. The factors that causing lymphopenia and the clinical significance of lymphopenia are studied in this article. Patients and methods 110 patients with esophageal squamous cell carcinoma who had undergo intensity-modulated radiation therapy were enrolled. Statistical methods were used to analyze the correlation between lymphopenia and total survival in patients with esophageal cancer during radiotherapy, and analyze the correlations between nutritional factors and lymphopenia. Results There were 11 patients with the lowest lymphocyte value with level 1-2 during radiotherapy, accounting for 10% of all the patients, and 110 patients with level 3-4, accounting for 90% of all the patient. In all the enrolled patients, the incidence of lymphocyte nadir G1, G2, G3 and G4 MinALC during radiotherapy accounted for 0.91%, 9.09%, 62.73% and 27.27%, respectively.KM survival analysis showed that the overall survival of patients in the group (MinALC ≤ 0.41×109/L) was significantly lower than that of the patients in the other group (MinALC>0.43×109/L). Nutritional indicators were positively correlated with the decline degree of lymphocytes. The minimal value of lymphocyte can predict the occurrence of grade 3-4 radiation pneumonitis. Conclusion Lymphopenia induced by radiotherapy can predict survival and radiation pneumonitis. Nutritional factors such as hemoglobin and albumin were positively correlated with total lymphocytes numbers induced by radiotherapy.
Collapse
Affiliation(s)
- Xiufang Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Yong Hou
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Jianping Guo
- Department of Oncology, Maternal and Child Health Care Hospital of Zibo, Zibo, Shandong, China
| | - Haiyan Wu
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Limin Nie
- Department of Pathology, Caoxian People's Hospital, Shandong, Heze, China
| | - Hang Wang
- Department of Graduate, Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zhang
- Department of Clinical Medicine, Shandong University, Jinan, Shandong, China
| | - Yajuan Lv
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
- *Correspondence: Yajuan Lv,
| |
Collapse
|
5
|
Feng B, Zhou W, Yang X, Luo H, Zhang X, Yang D, Tao D, Wu Y, Jin F. Pseudo-siamese network combined with dosimetric and clinical factors, radiomics features, CT images and 3D dose distribution for the prediction of radiation pneumonitis: A feasibility study. Clin Transl Radiat Oncol 2022; 38:188-194. [DOI: 10.1016/j.ctro.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
|
6
|
Li W, Liu JB, Hou LK, Yu F, Zhang J, Wu W, Tang XM, Sun F, Lu HM, Deng J, Bai J, Li J, Wu CY, Lin QL, Lv ZW, Wang GR, Jiang GX, Ma YS, Fu D. Liquid biopsy in lung cancer: significance in diagnostics, prediction, and treatment monitoring. Mol Cancer 2022; 21:25. [PMID: 35057806 PMCID: PMC8772097 DOI: 10.1186/s12943-022-01505-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Primary lung cancer is one of the most common malignant tumors in China. Approximately 60% of lung cancer patients have distant metastasis at the initial diagnosis, so it is necessary to find new tumor markers for early diagnosis and individualized treatment. Tumor markers contribute to the early diagnosis of lung cancer and play important roles in early detection and treatment, as well as in precision medicine, efficacy monitoring, and prognosis prediction. The pathological diagnosis of lung cancer in small biopsy specimens determines whether there are tumor cells in the biopsy and tumor type. Because biopsy is traumatic and the compliance of patients with multiple biopsies is poor, liquid biopsy has become a hot research direction. Liquid biopsies are advantageous because they are nontraumatic, easy to obtain, reflect the overall state of the tumor, and allow for real-time monitoring. At present, liquid biopsies mainly include circulating tumor cells, circulating tumor DNA, exosomes, microRNA, circulating RNA, tumor platelets, and tumor endothelial cells. This review introduces the research progress and clinical application prospect of liquid biopsy technology for lung cancer.
Collapse
|