1
|
Wang X, Yin QH, Wan LL, Sun RL, Wang G, Gu JF, Tang DC. Research progress on the effect of pyroptosis on the occurrence, development, invasion and metastasis of colorectal cancer. World J Gastrointest Oncol 2024; 16:3410-3427. [PMID: 39171180 PMCID: PMC11334039 DOI: 10.4251/wjgo.v16.i8.3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
Pyroptosis is a type of programmed cell death mediated by gasdermines (GSDMs). The N-terminal domain of GSDMs forms pores in the plasma membrane, causing cell membrane rupture and the release of cell contents, leading to an inflammatory response and mediating pyrodeath. Pyroptosis plays an important role in inflammatory diseases and malignant tumors. With the further study of pyroptosis, an increasing number of studies have shown that the pyroptosis pathway can regulate the tumor microenvironment and antitumor immunity of colorectal cancer and is closely related to the occurrence, development, treatment and prognosis of colorectal cancer. This review aimed to explore the molecular mechanism of pyroptosis and the role of pyroptosis in the occurrence, development, treatment and prognosis of colorectal cancer (CRC) and to provide ideas for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Xu Wang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Qi-Hang Yin
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Lin-Lu Wan
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Ruo-Lan Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Gang Wang
- Department of Ana and Intestine Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jun-Fei Gu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - De-Cai Tang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
2
|
Li Y, Cui Q, Zhou B, Zhang J, Guo R, Wang Y, Xu X. RSAD2, a pyroptosis-related gene, predicts the prognosis and immunotherapy response for colorectal cancer. Am J Cancer Res 2024; 14:2507-2522. [PMID: 38859852 PMCID: PMC11162672 DOI: 10.62347/rgjo6884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent malignant tumors, known for its high heterogeneity. Although many treatments and medications are available, the long-term survival rate of CRC patients is far from satisfactory. Pyroptosis is closely related to tumor progression. This study aimed to identify pyroptosis-related genes (PRGs) and candidate biomarkers to predict the prognosis of CRC patients. Used bioinformatics, we identified PRGs and subsequently screened 288 co-expression genes between pyroptosis-related modules and differentially expressed genes in CRC. Among these hub genes, we selected the top 24 for further analysis and found that Radical S-Adenosyl Methionine Domain Containing 2 (RSAD2) was a novel biomarker associated with the progression of CRC. We developed a risk model for RSAD2, which proved to be an independent prognostic indicator. The receiver operator characteristic analysis showed that the model had an acceptable prognostic value for patients with CRC. In addition, RSAD2 also affects the tumor immune microenvironment and prognosis of CRC. We further validated RSAD2 expression in CRC patients using RT-qPCR and the role of RSAD2 in pyroptosis. Taken together, this study comprehensively assessed the expression and prognostic value of RSAD2 in patients with CRC. These findings may offer a new direction for early CRC screening and development of future immunotherapy strategies.
Collapse
Affiliation(s)
- Yunxiao Li
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Qianqian Cui
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Bin Zhou
- Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430000, Hubei, China
| | - Jiayu Zhang
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Rong Guo
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Yanyan Wang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| | - Xinhua Xu
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People’s HospitalYichang 443000, Hubei, China
| |
Collapse
|
3
|
Shalaby NE, Shoheib ZS, Yassin NA, El-Kaliny HH, Hasby Saad MA. Pyroptosis Tuning in Intestinal Cryptosporidiosis via the Natural Histone Deacetylase Inhibitor Romidepsin. Parasite Immunol 2024; 46:e13032. [PMID: 38497997 DOI: 10.1111/pim.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
Cryptosporidium is an opportunistic protozoan, with many species of cross-human infectivity. It causes life-threatening diarrhoea in children and CD4-defective patients. Despite its limited efficacy, nitazoxanide remains the primary anti-cryptosporidial drug. Cryptosporidium infects the intestinal brush border (intracellular-extracytoplasmic) and down-regulates pyroptosis to prevent expulsion. Romidepsin is a natural histone deacetylase inhibitor that triggers pyroptosis. Romidepsin's effect on cryptosporidiosis was assessed in immunocompromised mice via gasdermin-D (GSDM-D) immunohistochemical expression, IFN-γ, IL-1β and IL-18 blood levels by ELISA, and via parasite scanning by modified Ziehl-Neelsen staining and scanning electron microscopy (SEM). Oocyst deformity and local cytokines were also assessed in ex vivo ileal explants. Following intraperitoneal injection of romidepsin, oocyst shedding significantly reduced at the 9th, 12th and 15th d.p.i. compared with infected-control and drug-control (nitazoxanide-treated) mice. H&E staining of intestinal sections from romidepsin-treated mice showed significantly low intestinal scoring with marked reduction in epithelial hyperplasia, villous blunting and cellular infiltrate. SEM revealed marked oocyst blebbing and paucity (in vivo and ex vivo) after romidepsin compared with nitazoxanide. Regarding pyroptosis, romidepsin triggered significantly higher intestinal GSDM-D expression in vivo, and higher serum/culture IFN-γ, IL-1β and IL-18 levels in romidepsin-treated mice than in the control groups. Collectively, in cryptosporidiosis, romidepsin succeeded in enhancing pyroptosis in the oocysts and infected epithelium, reducing infection and shifting the brush border towards normalisation.
Collapse
Affiliation(s)
- Noha E Shalaby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Zeinab S Shoheib
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nabila A Yassin
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba H El-Kaliny
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Anatomy and Histology Department, Mutah University, Mutah, Jordan
| | - Marwa A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Wei C, Zhou J, Tao W, Qin L, Zhang K, Huang J, Gao L, Zhou S. Assessment the value of Pyroptosis-Associated Gasdermin family genes in hepatocellular carcinoma: A Multi-Omics Comprehensive Analysis. J Cancer 2024; 15:1966-1982. [PMID: 38434972 PMCID: PMC10905399 DOI: 10.7150/jca.88887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 03/05/2024] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the common primary cancers of the liver worldwide and leading cause of mortality. Gasdermins (GSDMs) family genes play an important role in the regulation of the normal physiological processes and have been implicated in multiple diseases. However, little is known about the relationship between different GSDMs proteins and HCC. The aim of this study was to explore the potential relationship between the expression, prognosis, genetic variation and immune infiltration of GSDMs family genes and HCC. Methods: We used different bioinformatics common public databases such as GSCA, GEPIA, UALCAN, HPA, Kaplan-Meier Plotter, LinkedOmics, GeneMANIA, STRING, cBioPortal, TIMER and TISIDB to analyze the differential expression of the different GSDMs, prognostic value, genetic alterations, immune cell infiltration and their functional networks in HCC patients. Results: All the members of the GSDMs family exhibited elevated mRNA expression levels in LIHC compared to the normal tissues, while only GSDMB, GSDMD and GSDME showed enhanced protein expression. The mRNA expression of most GSDMs members was found to be elevated in HCC patients at stages I-III (clinical stage) compared to the normal subjects. The expression of GSDMD was correlated with OS and DSS of patients, whereas GSDME was correlated with OS, DSS and RFS of patients. Gene amplification was observed to be main mode of variation in members of the GSDMs family. KEGG pathway analysis showed that genes associated with different members of the GSDMs family were enriched in the pathways of S. aureus infection, intestinal immunity, ribosome and protein assembly, oxidative phosphorylation, osteoclast differentiation and Fc gamma (γ) R-mediated phagocytosis. In addition, expression of both GSDMA and GSDME were found to be correlated most significantly with infiltration of immune cells, while GSDMA and GSDME somatic cell copy number alteration (CAN) were correlated significantly with the infiltration of immune cells. All GSDMs were noted to be associated with distinct subtypes of immune cells, except GSDMC. Conclusions: Our findings have provided useful insights to better understand the roles and functions of GSDMs in HCC that can provide novel direction for developing therapeutic modalities for HCC, including immunotherapy.
Collapse
Affiliation(s)
- Changhong Wei
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People's Hospital of Nanning, Nanning, China
| | - Jiamin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenfu Tao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People's Hospital of Nanning, Nanning, China
| | - Lixian Qin
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People's Hospital of Nanning, Nanning, China
| | - Keke Zhang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People's Hospital of Nanning, Nanning, China
| | - Jieshan Huang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People's Hospital of Nanning, Nanning, China
| | - Ling Gao
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Clinical Laboratory, The First People's Hospital of Nanning, Nanning, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
5
|
Li L, Li Y, Lin J, Pang W. A Pyroptosis-Related Gene Signature Predicts Prognosis and Tumor Immune Microenvironment in Colorectal Cancer. Technol Cancer Res Treat 2024; 23:15330338241277584. [PMID: 39155627 PMCID: PMC11331578 DOI: 10.1177/15330338241277584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Pyroptosis is a programmed cell death, which garners increasing attention by relating to immune and therapy response. However, the role of pyroptosis in colorectal cancer (CRC) remains unclear. Our study mainly to explore the role of pyroptosis in CRC. The mRNA expression data and corresponding clinical information of CRC patients were achieved from The Cancer Genome Atlas (TCGA). Pyroptosis-related genes (PRGs) were identified using DESeq2 R package and biological function was analyzed using cluster Profiler R package. A PRGs-based prognosis model was constructed by a univariate Cox and LASSO regression analyses. Then, the affecting of risk signature to clinicopathological characteristics, immune status and infiltrated immune cells, immune checkpoint and chemotherapy sensitivity was analyzed. qRT-PCR and IHC were performed for the expression level of PRGs. Moreover, a nomogram predict model was constructed. Total 57 PRGs were identified between 500 CRC samples and 44 normal samples. Those PRGs mainly enriched in immune-related and pyroptosis-related pathways. GABRD, NADK, TMEM240, RER1, AGRN, UBE2J2, CALML6, PLCH2, TMEM88B have been identified as gene signature and a prognostic model was constructed and validated. CRC patients with high-risk score showed poor survival, high TMB score, high proportion of CD4 + memory T cells, common lymphoid progenitors, cancer associated fibroblasts, mast cells, and neutrophils. The immune checkpoint related genes, CD160, CD200R1, CD244, CD28, CD40LG, CD44, CD48, CD80, CD86, HHLA2, ICOS, IDO1, TIGIT, TNFRSF25, TNFRSF4, TNFRSF9, TNFSF15, TNFSF18 also increased in high-risk score group. CRC patients with high-risk score more sensitive to docetaxel and rapamycin but resistance to gemcitabine and mitomycin. Moreover, a predictive nomogram for 1-, 3-, 5-year for CRC patients was established and validated. In the study, a PRGs-based prognostic model and a predictive model were constructed. These models are effective and robust in prediction the 1-, 3-, and 5-year survival of CRC patients.
Collapse
Affiliation(s)
- Linjing Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, China
| | - Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, China
| | - Junyi Lin
- Department of Forensic Medicine, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wenjing Pang
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, China
| |
Collapse
|
6
|
Li M, Jiang P, Yang Y, Xiong L, Wei S, Wang J, Li C. The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment. Exp Hematol Oncol 2023; 12:103. [PMID: 38066523 PMCID: PMC10704735 DOI: 10.1186/s40164-023-00464-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, distinguishes itself from apoptosis and necroptosis and has drawn increasing attention. Recent studies have revealed a correlation between the expression levels of many pyroptosis-related genes and both tumorigenesis and progression. Despite advancements in cancer treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy, the persistent hallmark of cancer enables malignant cells to elude cell death and develop resistance to therapy. Recent findings indicate that pyroptosis can overcome apoptosis resistance amplify treatment-induced tumor cell death. Moreover, pyroptosis triggers antitumor immunity by releasing pro-inflammatory cytokines, augmenting macrophage phagocytosis, and activating cytotoxic T cells and natural killer cells. Additionally, it transforms "cold" tumors into "hot" tumors, thereby enhancing the antitumor effects of various treatments. Consequently, pyroptosis is intricately linked to tumor development and holds promise as an effective strategy for boosting therapeutic efficacy. As the principal executive protein of pyroptosis, the gasdermin family plays a pivotal role in influencing pyroptosis-associated outcomes in tumors and can serve as a regulatory target. This review provides a comprehensive summary of the relationship between pyroptosis and gasdermin family members, discusses their roles in tumor progression and the tumor immune microenvironment, and analyses the underlying therapeutic strategies for tumor treatment based on pyroptotic cell death.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
7
|
Wan N, Shi J, Xu J, Huang J, Gan D, Tang M, Li X, Huang Y, Li P. Gasdermin D: A Potential New Auxiliary Pan-Biomarker for the Detection and Diagnosis of Diseases. Biomolecules 2023; 13:1664. [PMID: 38002346 PMCID: PMC10669528 DOI: 10.3390/biom13111664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pyroptosis is a form of programmed cell death mediated by gasdermins, particularly gasdermin D (GSDMD), which is widely expressed in tissues throughout the body. GSDMD belongs to the gasdermin family, which is expressed in a variety of cell types including epithelial cells and immune cells. It is involved in the regulation of anti-inflammatory responses, leading to its differential expression in a wide range of diseases. In this review, we provide an overview of the current understanding of the major activation mechanisms and effector pathways of GSDMD. Subsequently, we examine the importance and role of GSDMD in different diseases, highlighting its potential as a pan-biomarker. We specifically focus on the biological characteristics of GSDMD in several diseases and its promising role in diagnosis, early detection, and differential diagnosis. Furthermore, we discuss the application of GSDMD in predicting prognosis and monitoring treatment efficacy in cancer. This review proposes a new strategy to guide therapeutic decision-making and suggests potential directions for further research into GSDMD.
Collapse
Affiliation(s)
- Ningyi Wan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jing Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianguo Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Juan Huang
- Department of Information Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Delu Gan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Min Tang
- Key Laboratory of Medical Diagnostics Designated by Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohan Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ying Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Pu Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
8
|
Yang X, Tang Z. Role of gasdermin family proteins in cancers (Review). Int J Oncol 2023; 63:100. [PMID: 37477150 PMCID: PMC10552715 DOI: 10.3892/ijo.2023.5548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
The gasdermin (GSDM) family comprises six proteins, including GSDMA‑GSDME and Pejvakin. Most of these proteins have a crucial role in inducing pyroptosis; in particular, GSDMD and GSDME are the most extensively studied proteins as the executioners of the pyroptosis process. Pyroptosis is a highly pro‑inflammatory form of programmed cell death and is closely associated with the incidence, development and prognosis of multiple cancer types. The present review focused on the current knowledge of the molecular mechanism of GSDM‑mediated pyroptosis, its intricate role in cancer and the potential therapeutic value of its anti‑tumor effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhe Tang
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
9
|
Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2023; 20:366-387. [PMID: 36781958 PMCID: PMC10238632 DOI: 10.1038/s41575-023-00743-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Since the identification and characterization of gasdermin (GSDM) D as the main effector of inflammatory regulated cell death (or pyroptosis), literature on the GSDM family of pore-forming proteins is rapidly expanding, revealing novel mechanisms regulating their expression and functions that go beyond pyroptosis. Indeed, a growing body of evidence corroborates the importance of GSDMs within the gastrointestinal system, underscoring their critical contributions to the pathophysiology of gastrointestinal cancers, enteric infections and gut mucosal inflammation, such as inflammatory bowel disease. However, with this increase in knowledge, several important and controversial issues have arisen regarding basic GSDM biology and its role(s) during health and disease states. These include critical questions centred around GSDM-dependent lytic versus non-lytic functions, the biological activities of cleaved versus full-length proteins, the differential roles of GSDM-expressing mucosal immune versus epithelial cells, and whether GSDMs promote pathogenic or protective effects during specific disease settings. This Review provides a comprehensive summary and interpretation of the current literature on GSDM biology, specifically focusing on the gastrointestinal tract, highlighting the main controversial issues and their clinical implications, and addressing future areas of research to unravel the specific role(s) of this intriguing, yet enigmatic, family of proteins.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
10
|
Hsu SK, Chen YE, Shu ED, Ko CC, Chang WT, Lin IL, Li CY, Gallego RP, Chiu CC. The Pyroptotic and Nonpyroptotic Roles of Gasdermins in Modulating Cancer Progression and Their Perspectives on Cancer Therapeutics. Arch Immunol Ther Exp (Warsz) 2023; 71:14. [PMID: 37258998 DOI: 10.1007/s00005-023-00678-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/09/2023] [Indexed: 06/02/2023]
Abstract
Gasdermins (GSDMs) are a protein family encoded by six paralogous genes in humans, including GSDMA, GSDMB, GSDMC, GSDMD, GSDME (also known as DFNA5), and DFNB59 (also known as pejvakin). Structurally, members of the GSDM family possess a C-terminus (an autoinhibitory domain) and a positively charged N-terminus (a pore-forming domain) linked with divergent peptide linkers. Recently, GSDMs have been identified as key executors of pyroptosis (an immunogenic programmed cell death) due to their pore-forming activities on the plasma membrane when proteolytically cleaved by caspases or serine proteases. Accumulating studies suggest that chemoresistance is attributed to dysregulation of apoptotic machinery and that inducing pyroptosis to bypass aberrant apoptosis can potently resensitize apoptosis-resistant cancer to chemotherapeutics. Pyroptosis is initiated by pore formation and culminates with plasma membrane rupture; these processes enable the release of proinflammatory cytokines (e.g., IL-1β and IL-18) and damage-associated molecular patterns, which further modulate antitumor immunity within the tumor microenvironment. Although pyroptosis is considered a promising strategy to boost antitumor effects, it is also reported to cause unwanted tissue damage (e.g., gut damage and nephrotoxicity). Intriguingly, mounting evidence has uncovered nonpyroptotic roles of GSDMs in tumorigenesis, such as proliferation, invasion, metastasis, and drug resistance. Thus, this provides a rationale for GSDMs as potential therapeutic targets. Taken together, we shed unbiased light on the pyroptosis-dependent roles of GSDMs in cancer progression and highlighted how GSDMs modulate tumorigenesis in a pyroptosis-independent manner. It is evident that targeting GSDMs seems profound in cancer management; however, several problems require further investigation to target GSDMs from bench to bedside, which is elucidated in the discussion section.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yi-En Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - En-De Shu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, 710, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rovelyn P Gallego
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115, Taiwan.
| |
Collapse
|
11
|
Wu X, Sun L, Xu F. NF-κB in Cell Deaths, Therapeutic Resistance and Nanotherapy of Tumors: Recent Advances. Pharmaceuticals (Basel) 2023; 16:783. [PMID: 37375731 DOI: 10.3390/ph16060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) plays a complicated role in multiple tumors. Mounting evidence demonstrates that NF-κB activation supports tumorigenesis and development by enhancing cell proliferation, invasion, and metastasis, preventing cell death, facilitating angiogenesis, regulating tumor immune microenvironment and metabolism, and inducing therapeutic resistance. Notably, NF-κB functions as a double-edged sword exerting positive or negative influences on cancers. In this review, we summarize and discuss recent research on the regulation of NF-κB in cancer cell deaths, therapy resistance, and NF-κB-based nano delivery systems.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liang Sun
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fangying Xu
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
- Department of Pathology and Pathophysiology, and Department of Hepatobiliary and Pancreatic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310005, China
| |
Collapse
|
12
|
El-Gamal R, Abdelrahim M, El-Sherbiny M, Enan ET, El-Nablaway M. Gasdermin D: A potential mediator and prognostic marker of bladder cancer. Front Mol Biosci 2022; 9:972087. [PMID: 36120543 PMCID: PMC9474890 DOI: 10.3389/fmolb.2022.972087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer is considered one of the commonest widespread cancers, its presentation ranges from non-muscle invasive form to being muscle-invasive. The gasdermin family of proteins consists of six proteins. Members of gasdermin family are involved in pyroptosis; which is considered as type of inflammatory apoptosis via participation of gasdermin D and inflammatory caspases. Purpose: The goal of this research was to look into the potential involvement of gasdermin D in pathogenesis of bladder cancer, In addition, to investigate its potential role as a prognostic marker of bladder cancer. Methods: Gasdermin D gene and protein expression was examined in fresh frozen 80 bladder cancer specimens (30 NMIBC, and 50 MIBC) and the matching 80 control tissue samples utilizing real-time polymerase chain reaction and western blotting. Furthermore, the immunoreactivity of gasdermin D protein was also detected by immunohistochemistry. Results: Gasdermin D gene and protein expression showed a highly significant difference between the control and the two bladder cancer groups (p < 0.001), as demonstrated by real-time PCR, western blotting and immunohistochemistry. Cox proportional hazards regression models showed that lower gasdermin D gene expression in cancer patients (≤1.58-fold), and younger age (≤53 years) were linked with a higher risk of local tumor recurrence. Moreover, higher gasdermin D gene expression (>2.18-fold), and lymph nodes’ involvement were associated with an increased mortality. Conclusion: Gasdermin D is involved in the pathogenesis of bladder cancer and muscle invasion, in addition, tissue gasdermin D expression may be used as useful tool to predict local tumor recurrence.
Collapse
Affiliation(s)
- Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Randa El-Gamal, ,
| | - Mona Abdelrahim
- Consultant of Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, Anatomy Unit, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Biochemistry Unit, Department of Basic Medical Sciences, College of Medicine, Almaarefa University, Riyad, Saudi Arabia
| |
Collapse
|
13
|
Huang X, Wang Y, Yang W, Dong J, Li L. Regulation of dietary polyphenols on cancer cell pyroptosis and the tumor immune microenvironment. Front Nutr 2022; 9:974896. [PMID: 36091247 PMCID: PMC9453822 DOI: 10.3389/fnut.2022.974896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is a major public health problem that threatens human life worldwide. In recent years, immunotherapy has made great progress in both clinical and laboratory research. But the high heterogeneity and dynamics of tumors makes immunotherapy not suitable for all cancers. Dietary polyphenols have attracted researchers' attention due to their ability to induce cancer cell pyroptosis and to regulate the tumor immune microenvironment (TIME). This review expounds the regulation of dietary polyphenols and their new forms on cancer cell pyroptosis and the TIME. These dietary polyphenols include curcumin (CUR), resveratrol (RES), epigallocatechin gallate (EGCG), apigenin, triptolide (TPL), kaempferol, genistein and moscatilin. New forms of dietary polyphenols refer to their synthetic analogs and nano-delivery, liposomes. Studies in the past decade are included. The result shows that dietary polyphenols induce pyroptosis in breast cancer cells, liver cancer cells, oral squamous cells, carcinoma cells, and other cancer cells through different pathways. Moreover, dietary polyphenols exhibit great potential in the TIME regulation by modulating the programmed cell death protein 1(PD-1)/programmed death-ligand 1 (PD-L1) axis, enhancing antitumor immune cells, weakening the function and activity of immunosuppressive cells, and targeting tumor-associated macrophages (TAMs) to reduce their tumor infiltration and promote their polarization toward the M1 type. Dietary polyphenols are also used with radiotherapy and chemotherapy to improve antitumor immunity and shape a beneficial TIME. In conclusion, dietary polyphenols induce cancer cell pyroptosis and regulate the TIME, providing new ideas for safer cancer cures.
Collapse
Affiliation(s)
- Xiaoxia Huang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Yao Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Wenhui Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
| | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Jing Dong
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, China
- Lin Li
| |
Collapse
|
14
|
Huang G, Zhou J, Chen J, Liu G. Identification of pyroptosis related subtypes and tumor microenvironment infiltration characteristics in breast cancer. Sci Rep 2022; 12:10640. [PMID: 35739182 PMCID: PMC9226023 DOI: 10.1038/s41598-022-14897-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Understanding the association of pyroptosis with tumor progression, prognosis and effect on immunotherapeutic response in breast cancer (BC) is limited. This study analysed forty pyroptosis-related genes to construct the pyroptosis score. Association of the pyroptosis score with the overall survival, clinical features, tumor mutation load, immune cell infiltration, and treatment sensitivity of patients with BC was analysed. Out of 983 BC samples, 304 (30.93%) had genetic alterations with the highest TP53 frequency. We identified three separate subtypes associated with pyroptosis action. These subtypes correlate with the clinicopathological characteristics, TME immune cell infiltration, and disease prognosis. Based on the expression levels of the pyroptosis genes, we divided the pyroptosis score into a high group and a low group. The immune-activated pyroptosis subtype had a higher score with a better prognosis. We also observed that the pyroptosis score correlates with the tumor mutation burden. The pyroptosis score and disease prognosis were directly proportional. A higher pyroptosis score indicated a better prognosis. Results suggest that the pyroptosis-related gene prognosis model is closely related to the immune cell infiltration of BC. The three pyroptosis subtypes associated with BC assist in accurately identifying the tumor subtype, the prognosis of immunotherapy drugs and the patient’s therapeutic response.
Collapse
Affiliation(s)
- Guo Huang
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Jun Zhou
- Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.,Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Juan Chen
- The Second Affiliated Hospital, Department of Radiotherapy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guowen Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| |
Collapse
|
15
|
Wu J, Wang L, Xu J. The role of pyroptosis in modulating the tumor immune microenvironment. Biomark Res 2022; 10:45. [PMID: 35739593 PMCID: PMC9229852 DOI: 10.1186/s40364-022-00391-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment (TIME) plays a key role in immunosuppression in cancer, which results in tumorigenesis and tumor progression, and contributes to insensitivity to chemotherapy and immunotherapy. Understanding the mechanism of TIME formation is critical for overcoming cancer. Pyroptosis exerts a dual role in modulating the TIME. In this review, we summarize the regulatory mechanisms of pyroptosis in modulating the TIME and the potential application of targeted pyroptosis therapy in the clinic. Several treatments targeting pyroptosis have been developed; however, the majority of treatments are still in preclinical studies. Only a few agents have been used in clinic, but the outcomes are unsatisfactory. More studies are necessary to determine the role of pyroptosis in cancer, and more research is required to realize the application of treatments targeting pyroptosis in the clinic.
Collapse
Affiliation(s)
- Jinxiang Wu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|