1
|
Díaz-Valdez J, Javier-Reyna R, Galindo A, Salazar-Villatoro L, Montaño S, Orozco E. EhVps35, a retromer component, is a key factor in secretion, motility, and tissue invasion by Entamoeba histolytica. Front Cell Infect Microbiol 2024; 14:1467440. [PMID: 39397861 PMCID: PMC11466944 DOI: 10.3389/fcimb.2024.1467440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024] Open
Abstract
In humans and Drosophila melanogaster, the functional convergence of the endosomal sorting complex required for transport (ESCRT) machinery that is in charge of selecting ubiquitinated proteins for sorting into multivesicular bodies, and the retromer, that is the complex responsible for protein recycling to the plasma membrane and Golgi apparatus. ESCRT and retromer complexes are codependent for protein sorting recycling, degradation, and secretion. In this article, we studied the EhVps35 C isoform (referred to as EhVps35), that is the central member of the Entamoeba histolytica retromer, and its relation with the ESCRT machinery during sorting and protein recycling events and their involvement virulence. Our findings revealed that EhVps35 interacts with at least 300 proteins that participate in multiple cellular processes. Laser confocal and transmission electronic microscopy images, as well as secretion assays, revealed that EhVps35 is secreted in vesicles together with EhVps23 and EhADH (both ESCRT machinery proteins). In addition, immunoprecipitation, immunofluorescence, and molecular docking assays revealed the relationship among EhVps35 and other ESCRT machinery proteins. Red blood cell stimulus increased EhVps35 secretion, and the knockdown of the Ehvps35 gene in trophozoites reduced their capacity to migrate and invade tissues. This also impacts the cellular localization of ubiquitin, EhVps23 (ESCRT-I), and EhVps32 (ESCRT-III) proteins, strongly suggesting their functional relationship. Our results, taken together, give evidence that EhVps35 is a key factor in E. histolytica virulence mechanisms and that it, together with the ESCRT machinery components and other regulatory proteins, is involved in vesicle trafficking, secretion, migration, and cell proliferation.
Collapse
Affiliation(s)
- Joselin Díaz-Valdez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Rosario Javier-Reyna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Ausencio Galindo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Sinaloa, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (IPN), Ciudad de México, Mexico
| |
Collapse
|
2
|
Guise AJ, Misal SA, Carson R, Chu JH, Boekweg H, Van Der Watt D, Welsh NC, Truong T, Liang Y, Xu S, Benedetto G, Gagnon J, Payne SH, Plowey ED, Kelly RT. TDP-43-stratified single-cell proteomics of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis. Cell Rep 2024; 43:113636. [PMID: 38183652 PMCID: PMC10926001 DOI: 10.1016/j.celrep.2023.113636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these data provide insights into proteome-level changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein dynamics in human neurologic diseases.
Collapse
Affiliation(s)
| | - Santosh A Misal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | - Hannah Boekweg
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | | | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | - Samuel H Payne
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
3
|
Guise AJ, Misal SA, Carson R, Boekweg H, Watt DVD, Truong T, Liang Y, Chu JH, Welsh NC, Gagnon J, Payne SH, Plowey ED, Kelly RT. TDP-43-stratified single-cell proteomic profiling of postmortem human spinal motor neurons reveals protein dynamics in amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544233. [PMID: 37333094 PMCID: PMC10274884 DOI: 10.1101/2023.06.08.544233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Unbiased proteomics has been employed to interrogate central nervous system (CNS) tissues (brain, spinal cord) and fluid matrices (CSF, plasma) from amyotrophic lateral sclerosis (ALS) patients; yet, a limitation of conventional bulk tissue studies is that motor neuron (MN) proteome signals may be confounded by admixed non-MN proteins. Recent advances in trace sample proteomics have enabled quantitative protein abundance datasets from single human MNs (Cong et al., 2020b). In this study, we leveraged laser capture microdissection (LCM) and nanoPOTS (Zhu et al., 2018c) single-cell mass spectrometry (MS)-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control donor spinal cord tissues, leading to the identification of 2515 proteins across MNs samples (>900 per single MN) and quantitative comparison of 1870 proteins between disease groups. Furthermore, we studied the impact of enriching/stratifying MN proteome samples based on the presence and extent of immunoreactive, cytoplasmic TDP-43 inclusions, allowing identification of 3368 proteins across MNs samples and profiling of 2238 proteins across TDP-43 strata. We found extensive overlap in differential protein abundance profiles between MNs with or without obvious TDP-43 cytoplasmic inclusions that together point to early and sustained dysregulation of oxidative phosphorylation, mRNA splicing and translation, and retromer-mediated vesicular transport in ALS. Our data are the first unbiased quantification of single MN protein abundance changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein abundance changes in human neurologic diseases.
Collapse
Affiliation(s)
| | - Santosh A. Misal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Richard Carson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Hannah Boekweg
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Yiran Liang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | | | | | | | - Samuel H. Payne
- Biology Department, Brigham Young University, Provo, UT 84602, USA
| | | | - Ryan T. Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| |
Collapse
|
4
|
Filippone A, Casili G, Scuderi SA, Mannino D, Lanza M, Campolo M, Paterniti I, Capra AP, Colarossi C, Bonasera A, Lombardo SP, Cuzzocrea S, Esposito E. Sodium Propionate Contributes to Tumor Cell Growth Inhibition through PPAR-γ Signaling. Cancers (Basel) 2022; 15:cancers15010217. [PMID: 36612214 PMCID: PMC9818202 DOI: 10.3390/cancers15010217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
New therapeutic approaches are needed to improve the outcome of patients with glioblastoma (GBM). Propionate, a short-chain fatty acid (SCFA), has a potent antiproliferative effect on various tumor cell types. Peroxisome proliferator-activated receptor (PPAR) ligands possess anticancer properties. We aimed to investigate the PPAR-γ/SCFAs interaction in in vitro and in vivo models of GBM. The U87 cell line was used in the in vitro study and was treated with sodium propionate (SP). U87 cells were silenced by using PPAR-γ siRNA or Ctr siRNA. In the in vivo study, BALB/c nude mice were inoculated in the right flank with 3 × 106 U-87 cells. SP (doses of 30 and 100 mg/kg) and GW9662 (1 mg/kg) were administered. In vitro exposure of GBM to SP resulted in prominent apoptosis activation while the autophagy pathway was promoted by SP treatments by influencing autophagy-related proteins. Knockdown of PPAR-γ sensitized GBM cells and blocked the SP effect. In vivo, SP was able to decrease tumor growth and to resolve GBM tissue features. SP promoted apoptosis and autophagy pathways and tumor cell proliferation leading to cell cycle arrest through a PPAR-γ-dependent mechanism suggesting that the PPAR-γ/SCFAs axis could be targeted for the management of GBM.
Collapse
Affiliation(s)
- Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo, 7-95029 Catania, Italy
| | - Annalisa Bonasera
- Istituto Oncologico del Mediterraneo, Via Penninazzo, 7-95029 Catania, Italy
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D׳Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
5
|
Filippone A, Esposito E, Mannino D, Lyssenko N, Praticò D. The contribution of altered neuronal autophagy to neurodegeneration. Pharmacol Ther 2022; 238:108178. [PMID: 35351465 PMCID: PMC9510148 DOI: 10.1016/j.pharmthera.2022.108178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022]
Abstract
Defects in cellular functions related to altered protein homeostasis and associated progressive accumulation of pathological intracellular material is a critical process involved in the pathogenesis of many neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Autophagy is an essential mechanism that ensures neuronal health by removing long-lived proteins or defective organelles and by doing so prevents cell toxicity and death within the central nervous system. Abundant evidence has shown that neuronal autophagy pathways are altered in Alzheimer's disease, Parkinson's disease and traumas of the central nervous system including Spinal Cord Injury and Traumatic Brain Injury. In this review, we aimed to summarize the latest studies on the role that altered neuronal autophagy plays in brain health and these pathological conditions, and how this knowledge can be leveraged for the development of novel therapeutics against them.
Collapse
Affiliation(s)
- Alessia Filippone
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D' Alcontres 31. 98166 Messina, Italy
| | - Nicholas Lyssenko
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Hart DA. Sex Differences in Biological Systems and the Conundrum of Menopause: Potential Commonalities in Post-Menopausal Disease Mechanisms. Int J Mol Sci 2022; 23:4119. [PMID: 35456937 PMCID: PMC9026302 DOI: 10.3390/ijms23084119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex-specific differences in biology and physiology likely start at the time of conception and progress and mature during the pre-puberty time frame and then during the transitions accompanying puberty. These sex differences are impacted by both genetics and epigenetic alterations during the maturation process, likely for the purpose of preparing for successful reproduction. For females, later in life (~45-50) they undergo another transition leading to a loss of ovarian hormone production at menopause. The reasons for menopause are not clear, but for a subset of females, menopause is accompanied by an increased risk of a number of diseases or conditions that impact a variety of tissues. Most research has mainly focused on the target cells in each of the affected tissues rather than pursue the alternative option that there may be commonalities in the development of these post-menopausal conditions in addition to influences on specific target cells. This review will address some of the potential commonalities presented by an integration of the literature regarding tissue-specific aspects of these post-menopausal conditions and data presented by space flight/microgravity (a condition not anticipated by evolution) that could implicate a loss of a regulatory function of the microvasculature in the risk attached to the affected tissues. Thus, the loss of the integration of the paracrine relationships between endothelial cells of the microvasculature of the tissues affected in the post-menopausal environment could contribute to the risk for post-menopausal diseases/conditions. The validation of this concept could lead to new approaches for interventions to treat post-menopausal conditions, as well as provide new understanding regarding sex-specific biological regulation.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada; ; Tel.: +1-403-220-4571
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| |
Collapse
|