1
|
Ribarič S. The Contribution of Type 2 Diabetes to Parkinson's Disease Aetiology. Int J Mol Sci 2024; 25:4358. [PMID: 38673943 PMCID: PMC11050090 DOI: 10.3390/ijms25084358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are chronic disorders that have a significant health impact on a global scale. Epidemiological, preclinical, and clinical research underpins the assumption that insulin resistance and chronic inflammation contribute to the overlapping aetiologies of T2D and PD. This narrative review summarises the recent evidence on the contribution of T2D to the initiation and progression of PD brain pathology. It also briefly discusses the rationale and potential of alternative pharmacological interventions for PD treatment.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Oszczędłowski P, Górecki K, Greluk A, Krawczyk M, Pacyna K, Kędzierawski JA, Ziółko AK, Chromiak K, Sławiński MA, Raczkiewicz P, Chylińska-Wrzos P, Jodłowska-Jędrych B, Pedrycz-Wieczorska A. All That Glitters Is Not Gold: Assessment of Bee Pollen Supplementation Effects on Gastric Mucosa. Nutrients 2023; 16:37. [PMID: 38201868 PMCID: PMC10780818 DOI: 10.3390/nu16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to assess the influence of bee pollen supplementation on the levels of enzymes important for gastric mucosal homeostasis, namely cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and a biomarker-asymmetric dimethylarginine (ADMA)-in the gastric mucosa of Wistar rats. The experimental phase divided the rats into four groups: two control groups, sedentary and active, both not supplemented, and two experimental groups, sedentary and active, supplemented with bee pollen. The results indicated that bee pollen supplementation reduced the levels of COX-1 and elevated iNOS levels, while showing no significant impact on COX-2 levels. These findings do not conclusively support the gastroprotective and anti-inflammatory effects of bee pollen on gastric mucosa. However, the supplementation could have resulted in reduced ADMA levels in the physically active supplemented group. Our study does not unequivocally demonstrate the positive effects of bee pollen supplementation on the gastric mucosa, which may be attributed to the specific metabolism and bioavailability of substances within unprocessed, dried bee pollen. Further research should explore the topic of potential therapeutic applications of bee pollen in gastrointestinal health and its interactions with ADMA signaling pathways.
Collapse
Affiliation(s)
- Paweł Oszczędłowski
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Kamil Górecki
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Aleksandra Greluk
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Milena Krawczyk
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Katarzyna Pacyna
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Jan Andrzej Kędzierawski
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Artur Kacper Ziółko
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Karol Chromiak
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Mirosław A. Sławiński
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | | | - Patrycja Chylińska-Wrzos
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Agnieszka Pedrycz-Wieczorska
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
3
|
Ni H, Guo Z, Wu Y, Wang J, Yang Y, Zhu Z, Wang D. The crucial role that hippocampus Cyclooxygenase-2 plays in memory. Eur J Neurosci 2023; 58:4123-4136. [PMID: 37867375 DOI: 10.1111/ejn.16165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
It is generally accepted that Cyclooxygenase-2 (COX-2) is activated to cause inflammation. However, COX-2 is also constitutively expressed at the postsynaptic dendrites and excitatory terminals of the cortical and spinal cord neurons. Although some evidence suggests that COX-2 release during neuronal signalling may be pivotal for regulating the function of memory, the significance of constitutively expressed COX-2 in neuron is still unclear. This research aims to discover the role of COX-2 in memory beyond neuroinflammation and to determine whether the inhibition of COX-2 can cause cognitive dysfunction by influencing dendritic plasticity and its underlying mechanism. We found COX-2 gene knockout (KO) could significantly impact the learning and memory ability, cause neuronal structure disorder and influence gamma oscillations. These might be mediated by the inhibition of prostaglandin (PG) E2/cAMP pathway and phosphorylated protein kinase A (p-PKA)-phosphorylated cAMP response element binding protein (p-CREB)-brain derived neurotrophic factor (BDNF) axis. It suggested COX-2 might play a critical role in learning, regulating neuronal structure and gamma oscillations in the hippocampus CA1 by regulating COX-2/BDNF signalling pathway.
Collapse
Affiliation(s)
- Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Wu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Jie Wang
- Department of Peripheral Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zilu Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|