1
|
Zheng T, Wang L, Wang H, Tang L, Xie X, Fu Q, Wu PY, Song B. Prediction model based on MRI morphological features for distinguishing benign and malignant thyroid nodules. BMC Cancer 2024; 24:256. [PMID: 38395783 PMCID: PMC10885392 DOI: 10.1186/s12885-024-11995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The low specificity of Thyroid Imaging Reporting and Data System (TI-RADS) for preoperative benign-malignant diagnosis leads to a large number of unnecessary biopsies. This study developed and validated a predictive model based on MRI morphological features to improve the specificity. METHODS A retrospective analysis was conducted on 825 thyroid nodules pathologically confirmed postoperatively. Univariate and multivariate logistic regression were used to obtain β coefficients, construct predictive models and nomogram incorporating MRI morphological features in the training cohort, and validated in the validation cohort. The discrimination, calibration, and decision curve analysis of the nomogram were performed. The diagnosis efficacy, area under the curve (AUC) and net reclassification index (NRI) were calculated and compared with TI-RADS. RESULTS 572 thyroid nodules were included (training cohort: n = 397, validation cohort: n = 175). Age, low signal intensity on T2WI, restricted diffusion, reversed halo sign in delay phase, cystic degeneration and wash-out pattern were independent predictors of malignancy. The nomogram demonstrated good discrimination and calibration both in the training cohort (AUC = 0.972) and the validation cohort (AUC = 0.968). The accuracy, sensitivity, specificity, PPV, NPV and AUC of MRI-based prediction were 94.4%, 96.0%, 93.4%, 89.9%, 96.5% and 0.947, respectively. The MRI-based prediction model exhibited enhanced accuracy (NRI>0) in comparison to TI-RADSs. CONCLUSIONS The prediction model for diagnosis of benign and malignant thyroid nodules demonstrated a more notable diagnostic efficacy than TI-RADS. Compared with the TI-RADSs, predictive model had better specificity along with a high sensitivity and can reduce overdiagnosis and unnecessary biopsies.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Radiology, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China
| | - Lanyun Wang
- Department of Radiology, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China
| | - Hao Wang
- Department of Radiology, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China
| | - Lang Tang
- Department of Ultrasound, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China
| | - Xiaoli Xie
- Department of Pathology, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China
| | - Qingyin Fu
- Department of Ultrasound, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China
| | - Pu-Yeh Wu
- GE Healthcare, MR Research China, Beijing, China
| | - Bin Song
- Department of Radiology, Minhang Hospital, Fudan University, No 170, Xinsong Road, Minhang District, 201199, Shanghai, China.
| |
Collapse
|
2
|
Panjaitan NSD, Lestari CSW, Maha MS. Thoughtful Response on "MRI-based Texture Analysis for Preoperative Prediction of BRAF V600E Mutation in Papillary Thyroid Carcinoma" [Letter]. J Multidiscip Healthc 2023; 16:275-276. [PMID: 36726481 PMCID: PMC9885877 DOI: 10.2147/jmdh.s405040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Affiliation(s)
- Novaria Sari Dewi Panjaitan
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, Indonesia
| | - Christina Safira Whinie Lestari
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, Indonesia
| | - Masri Sembiring Maha
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java, Indonesia
| |
Collapse
|