1
|
Cho EH, In CB, Lee GW, Hong SW, Seo EH, Lee WH, Kim SH. The Preventive Effect of Urinary Trypsin Inhibitor on Postoperative Cognitive Dysfunction, on the Aspect of Behavior, Evaluated by Y-Maze Test, via Modulation of Microglial Activity. Int J Mol Sci 2024; 25:2708. [PMID: 38473954 DOI: 10.3390/ijms25052708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
This experimental study was designed to evaluate the effect of ulinastatin, a urinary trypsin inhibitor, on postoperative cognitive dysfunction (POCD) in rats under general anesthesia with isoflurane, on the aspect of behavior, as evaluated using a Y-maze test and focusing on microglial activity. Ulinastatin (50,000 U/mL) and normal saline (1 mL) were randomly (1:1) administered intraperitoneally to the ulinastatin and control groups, respectively, before general anesthesia. Anesthesia with isoflurane 1.5 volume% was maintained for 2 h. The Y-maze test was used to evaluate cognitive function. Neuronal damage using caspase-1 expression, the degree of inflammation through cytokine detection, and microglial activation with differentiation of the phenotypic expression were evaluated. Twelve rats were enrolled in the study and evenly allocated into the two groups, with no dropouts from the study. The Y-maze test showed similar results in the two groups before general anesthesia (63 ± 12% in the control group vs. 64 ± 12% in the ulinastatin group, p = 0.81). However, a significant difference was observed between the two groups after general anesthesia (17 ± 24% in the control group vs. 60 ± 12% in the ulinastatin group, p = 0.006). The ulinastatin group showed significantly lower expression of caspase-1. Pro-inflammatory cytokine levels were significantly lower in the ulinastatin group than in the control group. The ulinastatin group had a significantly lower microglial activation (41.74 ± 10.56% in the control group vs. 4.77 ± 0.56% in the ulinastatin, p < 0.001), with a significantly lower activation of M1 phenotypes (52.19 ± 7.83% in the control group vs. 5.58 ± 0.76% in the ulinastatin group, p < 0.001). Administering ulinastatin before general anesthesia prevented neuronal damage and cognitive decline after general anesthesia, in terms of the aspect of behavior, as evaluated by the Y-maze test. The protective effect of ulinastatin was associated with the inhibition of microglial activation, especially the M1 phenotype.
Collapse
Affiliation(s)
- Eun-Hwa Cho
- Department of Infection and Immunology, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Chi-Bum In
- Department of Anesthesiology and Pain Medicine, Konyang University Hospital, Daejeon 35365, Republic of Korea
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Gyu-Won Lee
- Department of Anesthesiology and Pain Medicine, Konyang University Hospital, Daejeon 35365, Republic of Korea
| | - Seung-Wan Hong
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
| | - Eun-Hye Seo
- Korea mRNA Vaccine Initiative, Gachon University, Incheon 21936, Republic of Korea
| | - Won Hyung Lee
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Seong-Hyop Kim
- Department of Infection and Immunology, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
- Department of Anesthesiology and Pain Medicine, Konkuk University Medical Center, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
- Department of Medicine, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
- Department of Medical Education, School of Medicine, Konkuk University, Seoul 05030, Republic of Korea
| |
Collapse
|
2
|
Luo HM, Ye JR, Pu FQ, Luo HL, Zhang WJ. Role and therapeutic target of P2X2/3 receptors in visceral pain. Neuropeptides 2023; 101:102355. [PMID: 37390743 DOI: 10.1016/j.npep.2023.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.
Collapse
Affiliation(s)
- Hong-Mei Luo
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Jia-Rong Ye
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Fan-Qin Pu
- Department of Rheumatology, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi province 343000, China
| | - Hong-Liang Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province 343000, China.
| |
Collapse
|
3
|
Liao YH, Sun LH, Su YC, Yao WJ, Yu L. Medial and dorsal lateral septum involving social disruption stress-primed escalation in acid-induced writhes. Front Mol Neurosci 2023; 16:1158525. [PMID: 37152428 PMCID: PMC10157398 DOI: 10.3389/fnmol.2023.1158525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Stress may cause prospective escalations in abdominal pain magnitude and accumbal TRPV1 expression, while central neural circuits mediating these stress effects remain unclear. Methods Using retrograde tracing methods, we first demonstrated the existence of a medial septal-dorsal lateral septal -accumbal circuit very likely involving social disruption stress-primed escalations in acid-induced writhes and accumbal TRPV1 level. An intersectional viral strategy and virus-carrying hM3Dq and hM4Di DREADDs were, then, employed to selectively modulate GABAergic and cholinergic neuronal activity in medial and dorsal lateral septum. Results Exciting medial septal GABAergic neuron was found to prevent social disruption stress-primed escalations in acid-induced writhes and accumbal TRPV1 and PKCε expressions. Likewise, inactivating dorsal lateral septal cholinergic neurons was also effective in abolishing these stress-primed escalations. Inactivating GABAergic neuron in non-stressed animals' medial septum was found to reproduce the stress-primed effects in causing heightened acid-induced writhes and accumbal TRPV1 and PKCε levels. Discussion These results, taken together, prompt us to conclude that social disruption stress may produce plastic changes in a newly-identified medial septal-dorsal lateral septal-accumbal circuit. Moreover, medial septal GABAergic hypoactivity and dorsal lateral septal cholinergic hyperactivity are, at least, two likely causes reflecting such stress-produced escalations in abdominal pain magnitude and pain transduction-related protein over-expression in nucleus accumbens.
Collapse
Affiliation(s)
- Yi-Han Liao
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- *Correspondence: Yi-Han Liao,
| | - Li-Han Sun
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chi Su
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jen Yao
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Wei-Jen Yao,
| | - Lung Yu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Lung Yu,
| |
Collapse
|
4
|
Yang CL, Jing JJ, Fu SY, Zhong YL, Su XZ, Shi ZM, Wu XZ, Yang F, Chen GZ. Ropivacaine-induced seizures evoked pain sensitization in rats: Participation of 5-HT/5-HT3R. Neurotoxicology 2022; 93:173-185. [DOI: 10.1016/j.neuro.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
|
5
|
Dai P, Qi G, Xu H, Zhu M, Li J, Chen Y, Zhang L, Zhang X, Zhang Y. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus. Stem Cell Res Ther 2022; 13:370. [PMID: 35902971 PMCID: PMC9331803 DOI: 10.1186/s13287-022-03020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Islet transplantation is an excellent method for the treatment of type I diabetes mellitus. However, due to the limited number of donors, cumbersome isolation and purification procedures, and immune rejection, the clinical application is greatly limited. The development of a simple and efficient new method to obtain islet β-cells is a key problem that urgently requires a solution for the treatment of type I diabetes mellitus. METHODS In this study, Pbx1, Rfx3, Pdx1, Ngn3, Pax4 and MafA were used to form a six-gene combination to efficiently reprogram aMSCs (adipose mesenchymal stem cells) into ra-βCs (reprogrammed aMSCs-derived islet β-cells), and the characteristics and immunogenicity of ra-βCs were detected. Feasibility of ra-βCs transplantation for the treatment of diabetes mellitus in model dogs and clinical dogs was detected. RESULTS In this study, aMSCs were efficiently reprogrammed into ra-βCs using a six-gene combination. The ra-βCs showed islet β-cell characteristics. The immunogenicity of ra-βCs was detected and remained low in vitro and increased after transplantation. The cotransplantation of ra-βCs and aMSCs in the treatment of a model and clinical cases of canine diabetes mellitus achieved ideal therapeutic effects. CONCLUSIONS The aMSCs were efficiently reprogrammed into ra-βCs using a six-gene combination. The cotransplantation of ra-βCs and aMSCs as a treatment for canine diabetes is feasible, which provides a theoretical basis and therapeutic method for the treatment of canine diabetes.
Collapse
Affiliation(s)
- Pengxiu Dai
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guixiang Qi
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haojie Xu
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingde Zhu
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiakai Li
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yijing Chen
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luwen Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xinke Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yihua Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Centre, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Baiopai (Tianjin) Biotechnology Co., LTD, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
6
|
Guo ZB, Tang L, Wang LP, Wu HH, Huang CL, Zhan MX, Shi ZM, Yang CL, Chen GZ, Zou YQ, Yang F, Wu XZ. The analgesic effects of ulinastatin either as a single agent or in combination with sufentanil: A novel therapeutic potential for postoperative pain. Eur J Pharmacol 2021; 907:174267. [PMID: 34146590 DOI: 10.1016/j.ejphar.2021.174267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/11/2023]
Abstract
Ulinastatin is a broad-spectrum protease inhibitor widely used for the treatment of various inflammation-related diseases owing to its recognized excellent anti-inflammatory and cytoprotective properties. However, whether ulinastatin can relieve postoperative pain remains unclear. In this study, we evaluated the analgesic effects of ulinastatin administered either as a single agent or in combination with sufentanil in a validated preclinical rat model of postoperative pain induced by plantar incision. We found that incisional surgery on the hind paw of these rats induced sustained ipsilateral mechanical pain hypersensitivity that lasted for at least 10 days. A single intraperitoneal (i.p.) injection of ulinastatin prevented the development and reversed the maintenance of incision-induced mechanical pain hypersensitivity in a dose-dependent manner. However, ulinastatin had no effect on the baseline nociceptive threshold. Moreover, repeated i.p. injections of ulinastatin persistently attenuated incision-induced mechanical pain hypersensitivity and promoted recovery from the surgery. The rats did not develop any analgesic tolerance over the course of repeated injections of ulinastatin. A single i.p. injection of ulinastatin was also sufficient to inhibit the initiation and maintenance of incision-induced hyperalgesic priming when the rats were subsequently challenged with an ipsilateral intraplantar prostaglandin E2 injection. Furthermore, the combined administration of ulinastatin and sufentanil significantly enhanced the analgesic effect of sufentanil on postoperative pain, which involved mechanisms other than a direct influence on opioid receptors. These findings demonstrated that ulinastatin had a significant analgesic effect on postoperative pain and might be a novel pharmacotherapeutic agent for managing postoperative pain either alone or as an adjuvant.
Collapse
Affiliation(s)
- Zhi-Bin Guo
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China
| | - Li Tang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, PR China
| | - Li-Ping Wang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China
| | - Huang-Hui Wu
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Chang-Lu Huang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Mei-Xiang Zhan
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Zhong-Mou Shi
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Chen-Long Yang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China
| | - Guo-Zhong Chen
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China
| | - Yi-Qing Zou
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China.
| | - Fei Yang
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China; Pain Research Laboratory, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, Fujian, PR China.
| | - Xiao-Zhi Wu
- Department of Anesthesiology and Perioperative Medicine, 900 Hospital of the Joint Logistic Support Force / Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, PR China; Department of Anesthesiology and Perioperative Medicine, Dongfang Hospital, Xiamen University, Fuzhou, 350025, Fujian, PR China.
| |
Collapse
|