1
|
Sus J, Bosak J, Hauser T. Crushing tablets or sprinkling capsules: Implications for clinical strategy and study performance based on BE studies of rivaroxaban and deferasirox. Clin Transl Sci 2024; 17:e13752. [PMID: 38511529 PMCID: PMC10955620 DOI: 10.1111/cts.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Administration of oral medicinal products as crushed tablets or open capsules is an important delivery option for patients suffering from dysphagia. To obtain full interchangeability of generics with the original products, demonstration of bioequivalence (BE) between both products administered as crushed tablets/open capsules was required for poorly soluble product by European Medicines Agency (EMA) at the time of development of our rivaroxaban and deferasirox generic products. We present the results of two BE studies with modified administration of these products, which compared relative bioavailability between generic and reference products. In the rivaroxaban study, the test product was administered as a capsule sprinkled on and mixed with applesauce, whereas the reference tablet was crushed and administered with applesauce under fed conditions. In the deferasirox study, both treatments were administered as crushed tablets under fasting conditions. Both studies applied a two-way crossover design and were conducted after a single-dose in healthy volunteers. The 90% confidence interval of the geometric mean ratio area under the analyte concentration versus time curve, from time zero to the time of the last measurable analyte concentration and maximum measured analyte concentration over the sampling period of the test to reference ratio were 103.36-110.37% and 97.98-108.45% for rivaroxaban, respectively, and 96.69-107.29% and 94.19-109.45% for deferasirox, respectively. Thus, the BE criteria (80.00-125.00%) were met in both studies which demonstrated that bioavailability was not affected when the test and reference products were administered in the form of crushed tablet/open capsule. These results support the argument of redundancy of crushed product studies for poorly soluble drugs, which is in line with the currently revised position of the EMA on this topic.
Collapse
Affiliation(s)
- Jan Sus
- Zentiva, k.s.PragueCzech Republic
| | | | | |
Collapse
|
2
|
Silva RTCE, Bruschi ML. Mini-tablets as technological strategy for modified release of morphine sulfate. Pharm Dev Technol 2022; 27:766-772. [PMID: 36017971 DOI: 10.1080/10837450.2022.2118769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aim of this study was to use intelligent formulation design for development of mini-tablets for modified release of morphine sulfate. A formulation (F1) was proposed using the Hiperstart® software. Based on the suggested formulation, two other formulations (F2 and F3) were prepared: one for modified and another for immediate drug release. The powders were characterized as bulk and tapped density, Hausner's factor and compressibility index analyzes. Mini-tablets were directly compressed and characterized as hardness, friability, size, and weight variation. The in vitro drug release profile was carried out according to the apparatus 1 of USP. Formulations showed good flow properties, and the mini-tablets displayed characteristics according to the specified. In comparison to F3 (immediate release), F1 and F2 displayed slower drug release time, showing the efficiency of the matrix formed. F3 displayed 90% of drug released up to 10 min, while F1 and F2 required 240 min. The results highlight the importance to use intelligent formulation design for the development of improved mini-tablet matrices. Formulation F1 was found to be suitable for modified morphine sulfate release. Further studies with more formulations are necessary for production of optimized mini-tablets with suitable prolonged morphine sulfate release.
Collapse
Affiliation(s)
- Raizza Tafet Carminato E Silva
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, PR, Brazil
| | - Marcos Luciano Bruschi
- Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, State University of Maringa, 87020-900, Maringa, PR, Brazil
| |
Collapse
|
3
|
Garg KK, Gautam SKS, Dhiraaj S. Morphine Sustained Release Tablets Becoming Ghost Pill: A Palliative Conundrum. Indian J Palliat Care 2022; 28:224-225. [PMID: 35673690 PMCID: PMC9168280 DOI: 10.25259/ijpc_97_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Keshav Kumar Garg
- Department of Anaesthesiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India,
| | - Sujeet Kumar Singh Gautam
- Department of Anaesthesiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India,
| | - Sanjay Dhiraaj
- Department of Anaesthesiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India,
| |
Collapse
|
4
|
Bhansali D, Teng SL, Lee CS, Schmidt BL, Bunnett NW, Leong KW. Nanotechnology for Pain Management: Current and Future Therapeutic Interventions. NANO TODAY 2021; 39:101223. [PMID: 34899962 PMCID: PMC8654201 DOI: 10.1016/j.nantod.2021.101223] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain is one of the most common medical conditions and affects more Americans than diabetes, heart disease, and cancer combined. Current pain treatments mainly rely on opioid analgesics and remain unsatisfactory. The life-threatening side effects and addictive properties of opioids demand new therapeutic approaches. Nanomedicine may be able to address these challenges as it allows for sensitive and targeted treatments without some of the burdens associated with current clinical pain therapies. This review discusses the physiology of pain, the current landscape of pain treatment, novel targets for pain treatment, and recent and ongoing efforts to effectively treat pain using nanotechnology-based approaches. We highl ight advances in nanoparticle-based drug delivery to reduce side effects, gene therapy to tackle the source of pain, and nanomaterials-based scavenging to proactively mediate pain signaling.
Collapse
Affiliation(s)
- Divya Bhansali
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Shavonne L. Teng
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Caleb S. Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Nigel W. Bunnett
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone School of Medicine, New York, NY 10010
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
- Department of Systems Biology, Columbia University, New York, NY 10027
| |
Collapse
|
5
|
Chartier M, Desgagné M, Sousbie M, Côté J, Longpré JM, Marsault E, Sarret P. Design, Structural Optimization, and Characterization of the First Selective Macrocyclic Neurotensin Receptor Type 2 Non-opioid Analgesic. J Med Chem 2021; 64:2110-2124. [PMID: 33538583 DOI: 10.1021/acs.jmedchem.0c01726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotensin (NT) receptor type 2 (NTS2) represents an attractive target for the development of new NT-based analgesics. Here, we report the synthesis and functional in vivo characterization of the first constrained NTS2-selective macrocyclic NT analog. While most chemical optimization studies rely on the NT(8-13) fragment, we focused on NT(7-12) as a scaffold to design NTS2-selective macrocyclic peptides. Replacement of Ile12 by Leu, and Pro7/Pro10 by allylglycine residues followed by cyclization via ring-closing metathesis led to macrocycle 4, which exhibits good affinity for NTS2 (50 nM), high selectivity over NTS1 (>100 μM), and improved stability compared to NT(8-13). In vivo profiling in rats reveals that macrocycle 4 produces potent analgesia in three distinct rodent pain models, without causing the undesired effects associated with NTS1 activation. We further provide evidence of its non-opioid antinociceptive activity, therefore highlighting the strong therapeutic potential of NTS2-selective analogs for the management of acute and chronic pain.
Collapse
Affiliation(s)
- Magali Chartier
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Michael Desgagné
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Marc Sousbie
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Eric Marsault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
6
|
Yaksh TL. Frontiers in Pain Research: A Scope of Its Focus and Content. FRONTIERS IN PAIN RESEARCH 2020; 1:601528. [PMID: 35295691 PMCID: PMC8915630 DOI: 10.3389/fpain.2020.601528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
|
7
|
Dragojevic-Simic V, Rancic N, Stamenkovic D, Simic R. Utilization of Parenteral Morphine by Application of ATC/DDD Methodology: Retrospective Study in the Referral Teaching Hospital. Front Public Health 2017; 5:232. [PMID: 28913333 PMCID: PMC5583145 DOI: 10.3389/fpubh.2017.00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/18/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Few studies analyzed the pattern of opioid analgesic utilization in hospital settings. The aim of this study was to determine the consumption pattern of parenteral morphine in patients hospitalized in the Serbian referral teaching hospital and to correlate it with utilization at the national and international level. METHODS In retrospective study, the required data were extracted from medical records of surgical patients who received parenteral morphine in the 5-year period, from 2011 to 2015. We used the Anatomical Therapeutic Chemical Classification/Defined Daily Doses (DDD) international system for consumption evaluation. RESULTS While the number of performed surgical procedures in our hospital steadily increased from 2011 to 2015, the number of inpatient bed-days decreased from 2012. However, the consumption of parenteral morphine varied and was not more than 0.867 DDD/100 bed-days in the observed period. CONCLUSION Based on the available data, parenteral morphine consumption in our hospital was lower compared with international data. The low level of morphine use in the hospital was in accordance with national data, and compared with other countries, morphine consumption applied for medical indications in Serbia was low. Adequate legal provision to ensure the availability of opioids, better education and training of medical personnel, as well as multidisciplinary approach should enable more rational and individual pain management in the future, not only within the hospitals.
Collapse
Affiliation(s)
- Viktorija Dragojevic-Simic
- Centre for Clinical Pharmacology, Medical Faculty Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nemanja Rancic
- Centre for Clinical Pharmacology, Medical Faculty Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Dusica Stamenkovic
- Clinic for Anesthesiology and Critical Care, Medical Faculty Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Radoje Simic
- Department for Plastic Surgery, Institute for Mother and Child Health Care of Serbia "Dr Vukan Cupic", Medical School, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Fitting S, Stevens DL, Khan FA, Scoggins KL, Enga RM, Beardsley PM, Knapp PE, Dewey WL, Hauser KF. Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice. J Pharmacol Exp Ther 2015; 356:96-105. [PMID: 26542403 DOI: 10.1124/jpet.115.226407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence.
Collapse
Affiliation(s)
- Sylvia Fitting
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - David L Stevens
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Fayez A Khan
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Krista L Scoggins
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Rachel M Enga
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Patrick M Beardsley
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - William L Dewey
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology (S.F., D.L.S., F.A.K., K.L.S., R.M.E., P.M.B., P.E.K., W.L.D., K.F.H.), Department of Anatomy and Neurobiology (P.E.K., K.F.H.), Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
9
|
Vosburg SK, Jones JD, Manubay JM, Ashworth JB, Shapiro DY, Comer SD. A comparison among tapentadol tamper-resistant formulations (TRF) and OxyContin® (non-TRF) in prescription opioid abusers. Addiction 2013; 108:1095-106. [PMID: 23316699 PMCID: PMC3664924 DOI: 10.1111/add.12114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/09/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
AIMS To examine whether tamper-resistant formulations (TRFs) of tapentadol hydrochloride extended-release (ER) 50 mg (TAP50) and tapentadol hydrochloride 250 mg (TAP250) could be converted into forms amenable to intranasal (study 1) or intravenous abuse (study 2). DESIGN Randomized, repeated-measures study designs were employed. A non-TRF of OxyContin® 40 mg (OXY40) served as a positive control. No drug was taken in either study. SETTING The studies took place in an out-patient setting in New York, NY. PARTICIPANTS Twenty-five experienced, healthy ER oxycodone abusers participated in each study. MEASUREMENTS The primary outcome for study 1 was the percentage of participants who indicated that they would snort the tampered tablets, while the primary outcome for study 2 was the percentage yield of active drug in solution. Other descriptive variables, such as time spent manipulating the tablets, were also examined to characterize tampering behaviors more clearly. FINDINGS Tampered TRF tablets were less desirable than the tampered OXY40 tablets. Few individuals were willing to snort the TRF particles (TAP50: 24%, TAP250: 16%; OXY40: 100% P < 0.001). There was less drug extracted from the TAP50 tablet than from the OXY40 tablet (3.52 versus 37.02%, P = 0.008), and no samples from the TAP250 tablets contained analyzable solutions of the drug. It took participants longer to tamper with the TAPs (study 1: TAP50 versus OXY40, P < 0.01; TAP250 versus OXY40, P < 0.01; study 2: TAP250 versus OXY40, P < 0.05). CONCLUSIONS Tamper-resistant formulations of taptentadol (pain relief) tablets do not appear to be well-liked by individuals who tamper regularly with extended-release oxycodone tablets. Employing tamper-resistant technology may be a promising approach towards reducing the abuse potential of tapentadol extended-release.
Collapse
|