1
|
Zhong X, Veilleux JC, Shi GH, Collins DS, Vlachos P, Ardekani AM. Hydrodynamic considerations for spring-driven autoinjector design. Int J Pharm 2023; 640:122975. [PMID: 37116602 DOI: 10.1016/j.ijpharm.2023.122975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
In recent years, significant progress has been made in the studies of the spring-driven autoinjector, leading to an improved understanding of this device and its interactions with tissue and therapeutic proteins. The development of simulation tools that have been validated against experiments has also enhanced the prediction of the performance of spring-driven autoinjectors. This paper aims to address critical hydrodynamic considerations that impact the design of spring-driven autoinjectors, with a specific emphasis on sloshing and cavitation. Additionally, we present a framework that integrates simulation tools to predict the performance of spring-driven autoinjectors and optimize their design. This work is valuable to the pharmaceutic industry, as it provides crucial insights into the development of spring-driven autoinjectors and therapeutic proteins. This work can also enhance the efficacy and safety of the delivery of therapeutic proteins, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoxu Zhong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | | | | | - David S Collins
- Eli Lilly and Company, Indianapolis, IN 46225, United States
| | - Pavlos Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, United States.
| |
Collapse
|
2
|
Next generation strategies for preventing preterm birth. Adv Drug Deliv Rev 2021; 174:190-209. [PMID: 33895215 DOI: 10.1016/j.addr.2021.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth (PTB) is defined as delivery before 37 weeks of gestation. Globally, 15 million infants are born prematurely, putting these children at an increased risk of mortality and lifelong health challenges. Currently in the U.S., there is only one FDA approved therapy for the prevention of preterm birth. Makena is an intramuscular progestin injection given to women who have experienced a premature delivery in the past. Recently, however, Makena failed a confirmatory trial, resulting the Center for Drug Evaluation and Research's (CDER) recommendation for the FDA to withdrawal Makena's approval. This recommendation would leave clinicians with no therapeutic options for preventing PTB. Here, we outline recent interdisciplinary efforts involving physicians, pharmacologists, biologists, chemists, and engineers to understand risk factors associated with PTB, to define mechanisms that contribute to PTB, and to develop next generation therapies for preventing PTB. These advances have the potential to better identify women at risk for PTB, prevent the onset of premature labor, and, ultimately, save infant lives.
Collapse
|
3
|
Schiro J, Pelayo S, Martinot A, Dubos F, Beuscart-Zéphir MC, Marcilly R. Applying a Human-Centered Design to Develop a Patient Prioritization Tool for a Pediatric Emergency Department: Detailed Case Study of First Iterations. JMIR Hum Factors 2020; 7:e18427. [PMID: 32886071 PMCID: PMC7501580 DOI: 10.2196/18427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Overcrowding in the emergency departments has become an increasingly significant problem. Patient triage strategies are acknowledged to help clinicians manage patient flow and reduce patients' waiting time. However, electronic patient triage systems are not developed so that they comply with clinicians' workflow. OBJECTIVE This case study presents the development of a patient prioritization tool (PPT) and of the related patient prioritization algorithm (PPA) for a pediatric emergency department (PED), relying on a human-centered design process. METHODS We followed a human-centered design process, wherein we (1) performed a work system analysis through observations and interviews in an academic hospital's PED; (2) deduced design specifications; (3) designed a mock PPT and the related PPA; and (4) performed user testing to assess the intuitiveness of the icons, the effectiveness in communicating patient priority, the fit between the prioritization model implemented and the participants' prioritization rules, and the participants' satisfaction. RESULTS The workflow analysis identified that the PPT interface should meet the needs of physicians and nurses, represent the stages of patient care, and contain patient information such as waiting time, test status (eg, prescribed, in progress), age, and a suggestion for prioritization. The mock-up developed gives the status of patients progressing through the PED; a strip represents the patient and the patient's characteristics, including a delay indicator that compares the patient's waiting time to the average waiting time of patients with a comparable reason for emergency. User tests revealed issues with icon intuitiveness, information gaps, and possible refinements in the prioritization algorithm. CONCLUSIONS The results of the user tests have led to modifications to improve the usability and usefulness of the PPT and its PPA. We discuss the value of integrating human factors into the design process for a PPT for PED. The PPT/PPA has been developed and installed in Lille University Hospital's PED. Studies are carried out to evaluate the use and impact of this tool on clinicians' situation awareness and prioritization-related cognitive load, prioritization of patients, waiting time, and patients' experience.
Collapse
Affiliation(s)
- Jessica Schiro
- Inserm, CIC-IT 1403/Evalab, F-59000, Lille, France.,Univ Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000, Lille, France
| | - Sylvia Pelayo
- Inserm, CIC-IT 1403/Evalab, F-59000, Lille, France.,Univ Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000, Lille, France
| | - Alain Martinot
- Univ Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000, Lille, France.,Paediatric Emergency Unit & Infectious Diseases, CHU Lille, Lille, France
| | - François Dubos
- Univ Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000, Lille, France.,Paediatric Emergency Unit & Infectious Diseases, CHU Lille, Lille, France
| | - Marie-Catherine Beuscart-Zéphir
- Inserm, CIC-IT 1403/Evalab, F-59000, Lille, France.,Univ Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000, Lille, France
| | - Romaric Marcilly
- Inserm, CIC-IT 1403/Evalab, F-59000, Lille, France.,Univ Lille, CHU Lille, ULR 2694 - METRICS : Évaluation des technologies de santé et des pratiques médicales, F-59000, Lille, France
| |
Collapse
|
4
|
17-α Hydroxyprogesterone Nanoemulsifying Preconcentrate-Loaded Vaginal Tablet: A Novel Non-Invasive Approach for the Prevention of Preterm Birth. Pharmaceutics 2019; 11:pharmaceutics11070335. [PMID: 31337153 PMCID: PMC6680947 DOI: 10.3390/pharmaceutics11070335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Preterm birth (PTB) is a major cause of infant mortality in the United States and around the globe. Makena®—once-a-week intramuscular injection of 17-α Hydroxyprogesterone caproate (17P)—is the only FDA approved treatment for the prevention of PTB. Invasive delivery of 17P requires hospitalization and expert personnel for injection. Vaginal delivery of 17P would be preferable, because of high patient compliance, reduced systemic exposure, fewer side effects, and no need for hospitalization. The objective of the present study was to prepare and evaluate a self-nanoemulsifying vaginal tablet of 17P. A solid self-nanoemulsifying preconcentrate (S-SNEDDS) of 17P and dimethylacetamide (DMA) was developed using medium chain triglycerides, a non- immunogenic surfactant, and co-processed excipient (PVA-F100). The tablet prepared was characterized for emulsification time, particle size, solid state properties, and drug release. The formulation showed >50% inhibition of TNF-α release from LPS-stimulated RAW 264.7 cells. Importantly, there were significant differences in rates of PTB and average time to delivery between control and vaginal 17P-treated groups in LPS-stimulated timed pregnant E15.5 mice. Considering the lacuna of therapeutic approaches in this area, vaginal delivery of 17P for the prevention of preterm birth has significant clinical relevance.
Collapse
|