1
|
Kim S, Hyun DG, Nam Y, Shin SJ, Im D, Kim HS, Leem SH, Park HH, Kim BH, Park YH, Cho E, Goddard WA, Kim DH, Kim HI, Moon M. Genipin and pyrogallol: Two natural small molecules targeting the modulation of disordered proteins in Alzheimer's disease. Biomed Pharmacother 2023; 168:115770. [PMID: 37865990 DOI: 10.1016/j.biopha.2023.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the aggregation of disordered proteins, such as amyloid beta (Aβ) and tau, leading to neurotoxicity and disease progression. Despite numerous efforts, effective inhibitors of Aβ and tau aggregates have not been developed. Thus, we aimed to screen natural small molecules from crude extracts that target various pathologies and are prescribed for patients with neurological diseases. In this study, we screened 162 natural small molecules prescribed for neurological diseases and identified genipin and pyrogallol as hit compounds capable of simultaneously regulating the aggregation of Aβ and tau K18. Moreover, we confirmed the dual modulatory effects of these compounds on the reduction of amyloid-mediated neurotoxicity in vitro and the disassembly of preformed Aβ42 and tau K18 fibrils. Furthermore, we observed the alleviatory effects of genipin and pyrogallol against AD-related pathologies in triple transgenic AD mice. Molecular dynamics and docking simulations revealed the molecular interaction dynamics of genipin and pyrogallol with Aβ42 and tau K18, providing insights into their suppression of aggregation. Our findings suggest the therapeutic potential of genipin and pyrogallol as dual modulators for the treatment of AD by inhibiting aggregation or promoting dissociation of Aβ and tau.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Dongjoon Im
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Seol Hwa Leem
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea
| | - Eunbi Cho
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea
| | - William A Goddard
- Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States
| | - Dong Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, the Republic of Korea.
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, the Republic of Korea; Center for Proteogenome Research, Korea University, Seoul 02841, the Republic of Korea; Single Cell Analysis Laboratory, Korea University, Seoul 02841, the Republic of Korea; Division of Chemistry and Chemical Engineering and Materials Process and Simulation Center, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, the Republic of Korea; Research Institute for Dementia Science, Konyang University, Daejeon 35365, the Republic of Korea.
| |
Collapse
|
2
|
Plascencia-Villa G, Perry G. Roles of Oxidative Stress in Synaptic Dysfunction and Neuronal Cell Death in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:1628. [PMID: 37627623 PMCID: PMC10451948 DOI: 10.3390/antiox12081628] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a brain disorder that progressively undermines memory and thinking skills by affecting the hippocampus and entorhinal cortex. The main histopathological hallmarks of AD are the presence of abnormal protein aggregates (Aβ and tau), synaptic dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. However, oxidative stress or oxidative damage is also evident and commonly overlooked or considered a consequence of the advancement of dementia symptoms. The control or onset of oxidative stress is linked to the activity of the amyloid-β peptide, which may serve as both antioxidant and pro-oxidant molecules. Furthermore, oxidative stress is correlated with oxidative damage to proteins, nucleic acids, and lipids in vulnerable cell populations, which ultimately lead to neuronal death through different molecular mechanisms. By recognizing oxidative stress as an integral feature of AD, alternative therapeutic or preventive interventions are developed and tested as potential or complementary therapies for this devastating neurodegenerative disease.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA;
| | | |
Collapse
|
3
|
Mahdipour R, Ebrahimzadeh-Bideskan A, Hosseini M, Shahba S, Lombardi G, Malvandi AM, Mohammadipour A. The benefits of grape seed extract in neurological disorders and brain aging. Nutr Neurosci 2023; 26:369-383. [PMID: 35343876 DOI: 10.1080/1028415x.2022.2051954] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Common neurological disorders, including neurodegenerative diseases, stroke, epilepsy, autism and psychiatric disorders, affect many people worldwide and threaten their lives and health by inducing movement disorders, behavioral disorders, or a combination of both. Oxidative stress and neuroinflammation play a central role in neuronal damage and neurological diseases induction and progression. In addition, protein homeostasis (proteostasis) impairment occurs in many neurodegenerative diseases, which plays a critical role in the progression of the pathology. Grape seed contains several flavonoids and non-flavonoids and exerts potent antioxidant and anti-inflammatory effects. In addition, polyphenols and flavanols can maintain cellular proteostasis. Since impaired proteostasis is closely involved in all amyloid diseases, particularly neurodegenerative diseases, grape seeds extract can be a valuable therapeutic agent. Therefore, this review discusses the protective and therapeutic mechanisms of grape seed against neurological disorders and, in the end, links GSE to microRNAs as future therapeutic developments.
Collapse
Affiliation(s)
- Ramin Mahdipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Ebrahimzadeh-Bideskan
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Neuroprotective Effects of Agri-Food By-Products Rich in Phenolic Compounds. Nutrients 2023; 15:nu15020449. [PMID: 36678322 PMCID: PMC9865516 DOI: 10.3390/nu15020449] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases are known for their wide range of harmful conditions related to progressive cell damage, nervous system connections and neuronal death. These pathologies promote the loss of essential motor and cognitive functions, such as mobility, learning and sensation. Neurodegeneration affects millions of people worldwide, and no integral cure has been created yet. Here, bioactive compounds have been proven to exert numerous beneficial effects due to their remarkable bioactivity, so they could be considered as great options for the development of new neuroprotective strategies. Phenolic bioactives have been reported to be found in edible part of plants; however, over the last years, a large amount of research has focused on the phenolic richness that plant by-products possess, which sometimes even exceeds the content in the pulp. Thus, their possible application as an emergent neuroprotective technique could also be considered as an optimal strategy to revalorize these agricultural residues (those originated from plant processing). This review aims to summarize main triggers of neurodegeneration, revise the state of the art in plant extracts and their role in avoiding neurodegeneration and discuss how their main phenolic compounds could exert their neuroprotective effects. For this purpose, a diverse search of studies has been conducted, gathering a large number of papers where by-products were used as strong sources of phenolic compounds for their neuroprotective properties. Finally, although a lack of investigation is quite remarkable and greatly limits the use of these compounds, phenolics remain attractive for research into new multifactorial anti-neurodegenerative nutraceuticals.
Collapse
|
5
|
Liu S, Xiao C, Wang F. Comparison of Two Varieties Fig (Peggy Red and Green) Peel Extracts by Liquid Chromatography-Tandem Mass Spectrometry Analysis and for Neuroprotective Efficacy in Caenorhabditis elegans. J Med Food 2023; 26:14-26. [PMID: 36595373 DOI: 10.1089/jmf.2021.k.0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous reports revealed that peel extracts of Ficus carica (fig) have a wide range of pharmacological and biological activities. The current study aimed to determine the phytochemical components of the ethanol extracts of Peggy Red fig (PRF) and Green fig (GF) peels by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, along with its antioxidant properties and neuroprotective effect in Caenorhabditis elegans. LC-MS/MS analysis confirmed 50 compounds in the extract, which revealed the presence of phenols, flavonoids, and anthocyanins, and exhibited in vitro antioxidant activity. PRF and GF peel had 163.25 (mg gallic acid equivalent [mg GAE]) g-1, 125.32 (mg GAE) g-1 of total phenolic content, 62.52 (mg rutin equivalent [mg RE]) g-1, and 43.36 (mg RE) g-1 flavonoids content, respectively. In all antioxidant assays, the extract of PRF peel showed higher antioxidant activity than the GF peel, and the extract of PRF peel could effectively reduce the aggregation of amyloid-beta (Aβ), decrease the paralysis of the body, and increase the antioxidant enzyme activities to reduce the toxicity of Aβ1-42 in Alzheimer's disease (AD) transgenic C. elegans CL4176. Therefore, PRF peel extract may have potential applications as a new source for drug development against AD.
Collapse
Affiliation(s)
- Shuzhen Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Chuxiang Xiao
- Department of Food Quality and Safety, College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Fengwu Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Phytotherapeutic Approaches to the Prevention of Age-Related Changes and the Extension of Active Longevity. Molecules 2022; 27:molecules27072276. [PMID: 35408672 PMCID: PMC9000830 DOI: 10.3390/molecules27072276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of age-related changes. Age-related changes such as a decrease in mental abilities, the development of inflammatory processes, and increased risk of developing type 2 diabetes have a significant impact on maintaining quality of life. Herbal preparations can play an essential role in preventing and treating neurodegenerative diseases that accompany age-related changes, including Alzheimer’s and Parkinson’s diseases. Medicinal plants have known sedative, muscle relaxant, neuroprotective, nootropic, and antiparkinsonian properties. The secondary metabolites, mainly polyphenolic compounds, are valuable substances for the development of new anti-inflammatory and hypoglycemic agents. Understanding how mixtures of plants and their biologically active substances work together to achieve a specific biological effect can help develop targeted drugs to prevent diseases associated with aging and age-related changes. Understanding the mechanisms of the biological activity of plant complexes and mixtures determines the prospects for using metabolomic and biochemical methods to prolong active longevity.
Collapse
|
7
|
Song JG, Yu MS, Lee B, Lee J, Hwang SH, Na D, Kim HW. Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders. Comput Struct Biotechnol J 2022; 20:1097-1110. [PMID: 35317228 PMCID: PMC8902474 DOI: 10.1016/j.csbj.2022.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
For a long time, the central nervous system was believed to be the only regulator of cognitive functions. However, accumulating evidence suggests that the composition of the microbiome is strongly associated with brain functions and diseases. Indeed, the gut microbiome is involved in neuropsychiatric diseases (e.g., depression, autism spectrum disorder, and anxiety) and neurodegenerative diseases (e.g., Parkinson’s disease and Alzheimer’s disease). In this review, we provide an overview of the link between the gut microbiome and neuropsychiatric or neurodegenerative disorders. We also introduce analytical methods used to assess the connection between the gut microbiome and the brain. The limitations of the methods used at present are also discussed. The accurate translation of the microbiome information to brain disorder could promote better understanding of neuronal diseases and aid in finding alternative and novel therapies.
Collapse
Affiliation(s)
- Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jingyu Lee
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Su-Hee Hwang
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Corresponding authors.
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
- Corresponding authors.
| |
Collapse
|
8
|
Calfio C, Gonzalez A, Singh SK, Rojo LE, Maccioni RB. The Emerging Role of Nutraceuticals and Phytochemicals in the Prevention and Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 77:33-51. [PMID: 32651325 DOI: 10.3233/jad-200443] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the major challenges of medical sciences has been finding a reliable compound for the pharmacological treatment of Alzheimer's disease (AD). As most of the drugs directed to a variety of targets have failed in finding a medical solution, natural products from Ayurvedic medicine or nutraceutical compounds emerge as a viable preventive therapeutics' pathway. Considering that AD is a multifactorial disease, nutraceutical compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs used for AD treatment. We review in-depth important medicinal plants that have been already investigated for therapeutic uses against AD, focusing on a diversity of pharmacological actions. These targets include inhibition of acetylcholinesterase, β-amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc., and pharmacological actions so diverse as anti-inflammatory, memory enhancement, nootropic effects, glutamate excitotoxicity, anti-depressants, and antioxidants. In addition, we also discuss the activity of nutraceutical compounds and phytopharmaceuticals formulae, mainly directed to tau protein aggregates mechanisms of action. These include compounds such as curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and meganatural-az and other phytochemicals such as huperzine A, limonoids, azaphilones, and aged garlic extract. Finally, we revise the nutraceutical formulae BrainUp-10 composed of Andean shilajit and B-complex vitamins, with memory enhancement activity and the control of neuropsychiatric distress in AD patients. This integrated view on nutraceutical opens a new pathway for future investigations and clinical trials that are likely to render some results based on medical evidence.
Collapse
Affiliation(s)
- Camila Calfio
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Andrea Gonzalez
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, India.,Centre of Biomedical Research (CBMR), Lucknow, India
| | - Leonel E Rojo
- Department of Biology, University of Santiago, Santiago, Chile
| | - Ricardo B Maccioni
- Laboratory of Neurosciences and Functional Medicine, International Center for Biomedicine (ICC) and Faculty of Sciences, University of Chile, Santiago, Chile.,Department of Neurology, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
9
|
Šikuten I, Štambuk P, Andabaka Ž, Tomaz I, Marković Z, Stupić D, Maletić E, Kontić JK, Preiner D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020; 25:E5604. [PMID: 33260583 PMCID: PMC7731206 DOI: 10.3390/molecules25235604] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022] Open
Abstract
Grapes are rich in primary and secondary metabolites. Among the secondary metabolites, polyphenolic compounds are the most abundant in grape berries. Besides their important impacts on grape and wine quality, this class of compounds has beneficial effects on human health. Due to their antioxidant activity, polyphenols and phenolic acids can act as anti-inflammatory and anticancerogenic agents, and can modulate the immune system. In grape berries, polyphenols and phenolic acids can be located in the pericarp and seeds, but distribution differs considerably among these tissues. Although some classes of polyphenols and phenolic acids are under strict genetic control, the final content is highly influenced by environmental factors, such as climate, soil, vineyard, and management. This review aims to present the main classes of polyphenolic compounds and phenolic acids in different berry tissues and grape varieties and special emphasis on their beneficial effect on human health.
Collapse
Affiliation(s)
- Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Željko Andabaka
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Stupić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (I.Š.); (P.Š.); (Ž.A.); (Z.M.); (D.S.); (E.M.); (J.K.K.); (D.P.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
10
|
Docampo-Palacios ML, Alvarez-Hernández A, de Fátima Â, Lião LM, Pasinetti GM, Dixon RA. Efficient Chemical Synthesis of (Epi)catechin Glucuronides: Brain-Targeted Metabolites for Treatment of Alzheimer's Disease and Other Neurological Disorders. ACS OMEGA 2020; 5:30095-30110. [PMID: 33251444 PMCID: PMC7689943 DOI: 10.1021/acsomega.0c04512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 05/03/2023]
Abstract
Grape seed extract (GSE) is rich in flavonoids and has been recognized to possess human health benefits. Our group and others have demonstrated that GSE is able to attenuate the development of Alzheimer's disease (AD). Moreover, our results have disclosed that the anti-Alzheimer's benefits are not directly/solely related to the dietary flavonoids themselves, but rather to their metabolites, particularly to the glucuronidated ones. To facilitate the understanding of regioisomer/stereoisomer-specific biological effects of (epi)catechin glucuronides, we here describe a concise chemical synthesis of authentic standards of catechin and epicatechin metabolites 3-12. The synthesis of glucuronides 9 and 12 is described here for the first time. The key reactions employed in the synthesis of the novel glucuronides 9 and 12 include the regioselective methylation of the 4'-hydroxyl group of (epi)catechin (≤1.0/99.0%; 3'-OMe/4'-OMe) and the regioselective deprotection of the tert-butyldimethylsilyl (TBS) group at position 5 (yielding up to 79%) over the others (3, 7 and 3' or 4').
Collapse
Affiliation(s)
- Maite L. Docampo-Palacios
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-214-601-5892. Fax: +1-580-224-6692
| | - Anislay Alvarez-Hernández
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
| | - Ângelo de Fátima
- Department
of Chemistry, Universidade Federal de Minas
Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Luciano Morais Lião
- Institute
of Chemistry, Universidade Federal de Goiás, Goiânia, GO 74690-900, Brazil
| | - Giulio M. Pasinetti
- Department
of Psychiatry, The Mount Sinai School of
Medicine, New York, New York 10029, United States
| | - Richard A. Dixon
- BioDiscovery
Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, United States
- . Phone: +1-940-565-2308
| |
Collapse
|
11
|
Ofosu FK, Daliri EBM, Elahi F, Chelliah R, Lee BH, Oh DH. New Insights on the Use of Polyphenols as Natural Preservatives and Their Emerging Safety Concerns. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.525810] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
|
13
|
Reale M, Costantini E, Jagarlapoodi S, Khan H, Belwal T, Cichelli A. Relationship of Wine Consumption with Alzheimer's Disease. Nutrients 2020; 12:E206. [PMID: 31941117 PMCID: PMC7019227 DOI: 10.3390/nu12010206] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD), the most threatening neurodegenerative disease, is characterized by the loss of memory and language function, an unbalanced perception of space, and other cognitive and physical manifestations. The pathology of AD is characterized by neuronal loss and the extensive distribution of senile plaques and neurofibrillary tangles (NFTs). The role of environment and the diet in AD is being actively studied, and nutrition is one of the main factors playing a prominent role in the prevention of neurodegenerative diseases. In this context, the relationship between dementia and wine use/abuse has received increased research interest, with varying and often conflicting results. Scope and Approach: With this review, we aimed to critically summarize the main relevant studies to clarify the relationship between wine drinking and AD, as well as how frequency and/or amount of drinking may influence the effects. Key Findings and Conclusions: Overall, based on the interpretation of various studies, no definitive results highlight if light to moderate alcohol drinking is detrimental to cognition and dementia, or if alcohol intake could reduce risk of developing AD.
Collapse
Affiliation(s)
- Marcella Reale
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Erica Costantini
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Srinivas Jagarlapoodi
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China;
| | - Angelo Cichelli
- Dept. of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 65100 Chieti, Italy; (E.C.); (S.J.); (A.C.)
| |
Collapse
|
14
|
Govindaraghavan S. Adulteration of commercial grape seed extracts and other proanthocyanidins (PACs)-rich herbal extracts: Multi-compound HPLC profile patterns provide key to detection. Fitoterapia 2019; 134:389-403. [PMID: 30898730 DOI: 10.1016/j.fitote.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 11/25/2022]
|
15
|
Wang Q, Wang J, Yang Z, Sui R, Miao Q, Li Y, Yu J, Liu C, Zhang G, Xiao B, Ma C. Therapeutic effect of oligomeric proanthocyanidin in cuprizone-induced demyelination. Exp Physiol 2019; 104:876-886. [PMID: 30811744 DOI: 10.1113/ep087480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Oligomeric proanthocyanidin has the capacity to alleviate abnormalities in neurological functioning. However, whether oligomeric proanthocyanidin can reduce the progression of demyelination or promote remyelination in demyelinating diseases remains unknown. What is the main finding and its importance? Oligomeric proanthocyanidin can improve cuprizone-induced demyelination by inhibiting immune cell infiltration, reversing overactivated microglia, decreasing the inflammatory cytokines secreted by inflammatory cells and decreasing the production of myelin oligodendrocyte glycoprotein35-55 -specific antibody in the brain. ABSTRACT Demyelinating diseases of the CNS, including multiple sclerosis, neuromyelitis optica and acute disseminated encephalomylitis, are characterized by recurrent primary demyelination-remyelination and progressive neurodegeneration. In the present study, we investigated the therapeutic effect of oligomeric proanthocyanidin (OPC), the most effective component of grape seed extract, in cuprizone-fed C57BL/6 mice, a classic demyelination-remyelination model. Our results showed that OPC attenuated abnormal behaviour, reduced demyelination and increased expression of myelin basic protein and expression of O4+ oligodendrocytes in the corpus callosum. Oligomeric proanthocyanidin also reduced the numbers of B and T cells, activated microglia in the corpus callosum and inhibited secretion of inflammatory factors. Furthermore, concentrations of myelin oligodendrocyte glycoprotein-specific antibodies were significantly reduced in serum and brain homogenates after OPC treatment. Together, these results demonstrate a potent therapeutic effect for OPC in cuprizone-mediated demyelination and clearly highlight multiple effects of this natural product in attenuating myelin-specific autoantibodies and the inflammatory microenvironment in the brain.
Collapse
Affiliation(s)
- Qing Wang
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jing Wang
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhichao Yang
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Ruoxuan Sui
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Qiang Miao
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Chunyun Liu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| | - Guangxian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Baoguo Xiao
- Insitute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University,, Shanghai, 200040, China
| | - Cungen Ma
- The Key Research Laboratory Study of Beneficial Qi as a Blood Circulation Stimulator in the Treatment of Multiple Sclerosis, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.,Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University,, Datong, 037009, China
| |
Collapse
|
16
|
Safety evaluation, anti-oxidative and anti-inflammatory effects of subchronically dietary supplemented high dosing grape seed powder (GSP) to healthy rat. Biomed Pharmacother 2018; 107:534-546. [PMID: 30114637 DOI: 10.1016/j.biopha.2018.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Grape seed powder (GSP) contains high amount of bioactive polyphenols usually used as nutritional supplement or food preservatives due to their antioxidant and scavenging properties. The purpose of the present work was to evaluate the safety of increasing dosage GSP (w/w) of 0.5%, 5%, 10% and 20% corresponding to 0.4, 4, 8 and 16 g/kg bw respectively, when administered sub-chronically to Wistar rats in a 2 month-repeated dosing oral toxicity trial. Overally GSP had no effect on food intake, decreased body weight gain without affecting brain, liver, heart or kidney relative weight. GSP did not alter haematology except an increase in platelets, slightly decreased plasma transaminases, creatinine, urea and xanthine oxidase activity, without affecting uricemia, glycemia, triglyceridemia and cholesterolemia. GSP did not affect intracellular mediators as calcium, free iron or H2O2, but exerted real anti-oxidative properties in the four selected organs as assessed by lower lipoperoxidation and carbonylation, higher non protein thiols and antioxidant enzyme activities as CAT, GPx and SOD. Besides GSP exerted anti-inflammatory properties as supported by lower plasma IL17 A and CRP and higher IL10 and adiponectin. Histopathologically GSP provoked the dilation of heart and kidney arterioles and increased the size of the hippocampal dentate gyrus reflecting higher neurogenesis as assessed by Ki-67 labeling. Under the experimental conditions of the current study, GSP appeared as highly safe even when administered at very high dosage and could find potential applications in a variety of biotic or abiotic stresses-induced multi-organ dysfunction.
Collapse
|
17
|
Abstract
The development of effective medicines to break or delay the progressive brain degeneration underlying cognitive decline and dementia that characterize Alzheimer's disease (AD) is one of the greatest challenges of our time. In the present work, a selective pool of polyphenols, obtained from the white wine by adsorption to polyvinylpyrrolidone polymer (PVPP), was used to prepare a polyphenols-enriched diet, supplementing the drinking water with 100 mg/L (expressed as gallic acid equivalent) of wine polyphenolic extract. The impact of the daily consumption of water supplemented with polyphenols for 2 months on brain of 10-month-old 3xTg-AD and NonTg mice was evaluated, considering effects on the redox state of cells, levels of amyloid-β peptides, mitochondrial bioenergetics and fatty acid profile of whole membrane phospholipids. The polyphenols-enriched diet promotes brain accumulation of catechin and hydroxybenzoic acid derivatives, and modulates the redox state of 3xTg-AD brain cells, increasing both glutathione/glutathione disulfide ratio and catalase activity and decreasing membrane lipids oxidation. Additionally, the functional diet decreases the 3xTg-AD brain levels of both amyloid-β peptides, Aβ1-40 and Aβ1-42. However, the brain mitochondrial bioenergetic dysfunction of 3xTg-AD animals was not attenuated by the polyphenols-enriched diet. Lipidomic studies showed that this functional diet modulates membrane lipid composition of brain cells, increasing C22:6n-3 (docosahexanoic acid) and decreasing C20:4n-6 (arachidonic acid) levels, which may have beneficial impact on the chronic inflammatory process associated with AD pathology. Altogether, these results indicate that the oral administration of this polyphenols-enriched diet promotes significant benefits in multiple aspects of the pathophysiological cascade associated with the neuropathology developed by 3xTg-AD mice.
Collapse
|
18
|
|
19
|
Wojdyło A, Samoticha J, Nowicka P, Chmielewska J. Characterisation of (poly)phenolic constituents of two interspecific red hybrids of Rondo and Regent (Vitis vinifera) by LC-PDA-ESI-MS QTof. Food Chem 2017; 239:94-101. [PMID: 28873656 DOI: 10.1016/j.foodchem.2017.06.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/01/2022]
Abstract
The aim of this study was to identify and compare phenolic acids, flavan-3-ols, flavonols, and anthocyanins in two the most popular interspecific hybrids of red grapes, Rondo and Regent, nowadays very popular in red wine production in Poland. The phenolic profiles of these hybrids have not yet been reported. Thirty-three phenolic compounds, including 2 flavan-3-ols, 3 phenolic acids, 5 flavonols, and 23 anthocyanins, were determined in the examined samples using the ultra-performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method. Major differences were found in the phenolic profiles of investigated cultivars. The Regent hybrid exhibited the highest total phenolics content (27029.75mg/kg dry matter) but Rondo was characterized by the highest concentration of anthocyanins (19342.36mg/kgdm). The dominant fraction was anthocyanin compounds, especially acetylated>diglucosylated forms than glucosylated ones. This data represents valuable information that may be useful for oenological practices and to valorise these varieties as sources of bioactive compounds.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Nutraceutical Plant Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland.
| | - Justyna Samoticha
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Nutraceutical Plant Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Paulina Nowicka
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fruit, Vegetable and Nutraceutical Plant Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Joanna Chmielewska
- Wrocław University of Environmental and Life Sciences, The Faculty of Biotechnology and Food Science, Department of Fermentation and Cereal Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
20
|
Changes in the phenolic profile of Argentinean fresh grapes during production of sun-dried raisins. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Weseler AR, Bast A. Masquelier's grape seed extract: from basic flavonoid research to a well-characterized food supplement with health benefits. Nutr J 2017; 16:5. [PMID: 28103873 PMCID: PMC5248468 DOI: 10.1186/s12937-016-0218-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022] Open
Abstract
Careful characterization and standardization of the composition of plant-derived food supplements is essential to establish a cause-effect relationship between the intake of that product and its health effect. In this review we follow a specific grape seed extract containing monomeric and oligomeric flavan-3-ols from its creation by Jack Masquelier in 1947 towards a botanical remedy and nutraceutical with proven health benefits. The preparation's research history parallels the advancing insights in the fields of molecular biology, medicine, plant and nutritional sciences during the last 70 years. Analysis of the extract's flavanol composition emerged from unspecific colorimetric assays to precise high performance liquid chromatography - mass spectrometry and proton nuclear magnetic resonance fingerprinting techniques. The early recognition of the preparation's auspicious effects on the permeability of vascular capillaries directed research to unravel the underlying cellular and molecular mechanisms. Recent clinical data revealed a multitude of favorable alterations in the vasculature upon an 8 weeks supplementation which summed up in a health benefit of the extract in healthy humans. Changes in gene expression of inflammatory pathways in the volunteers' leukocytes were suggested to be involved in this benefit. The historically grown scientific evidence for the preparation's health effects paves the way to further elucidate its metabolic fate and molecular action in humans.
Collapse
Affiliation(s)
- Antje R. Weseler
- Department of Pharmacology and Toxicology; Faculty of Health, Medicine and Life Sciences, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology and Toxicology; Faculty of Health, Medicine and Life Sciences, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
22
|
The Effect of Polyphenols on Protein Degradation Pathways: Implications for Neuroprotection. Molecules 2017; 22:molecules22010159. [PMID: 28106854 PMCID: PMC6155800 DOI: 10.3390/molecules22010159] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 01/09/2023] Open
Abstract
Human neurodegenerative diseases are accompanied by accumulation of heavily oxidized and aggregated proteins. However, the exact molecular reason is not fully elucidated yet. Insufficient cellular protein quality control is thought to play an important role in accumulating covalently oxidized misfolded proteins. Pharmacologically active polyphenols and their derivatives exhibit potential for preventive and therapeutic purposes against protein aggregation during neurodegeneration. Although these compounds act on various biochemical pathways, their role in stabilizing the protein degradation machinery at different stages may be an attractive therapeutical strategy to halt the accumulation of misfolded proteins. This review evaluates and discusses the existing scientific literature on the effect of polyphenols on three major protein degradation pathways: chaperone-mediated autophagy, the proteasome and macroautophagy. The results of these studies demonstrate that phenolic compounds are able to influence the major protein degradation pathways at different levels.
Collapse
|
23
|
Das J, Ramani R, Suraju MO. Polyphenol compounds and PKC signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2107-21. [PMID: 27369735 DOI: 10.1016/j.bbagen.2016.06.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/01/2016] [Accepted: 06/26/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Naturally occurring polyphenols found in food sources provide huge health benefits. Several polyphenolic compounds are implicated in the prevention of disease states, such as cancer. One of the mechanisms by which polyphenols exert their biological actions is by interfering in the protein kinase C (PKC) signaling pathways. PKC belongs to a superfamily of serine-threonine kinase and are primarily involved in phosphorylation of target proteins controlling activation and inhibition of many cellular processes directly or indirectly. SCOPE OF REVIEW Despite the availability of substantial literature data on polyphenols' regulation of PKC, no comprehensive review article is currently available on this subject. This article reviews PKC-polyphenol interactions and its relevance to various disease states. In particular, salient features of polyphenols, PKC, interactions of naturally occurring polyphenols with PKC, and future perspective of research on this subject are discussed. MAJOR CONCLUSIONS Some polyphenols exert their antioxidant properties by regulating the transcription of the antioxidant enzyme genes through PKC signaling. Regulation of PKC by polyphenols is isoform dependent. The activation or inhibition of PKC by polyphenols has been found to be dependent on the presence of membrane, Ca(2+) ion, cofactors, cell and tissue types etc. Two polyphenols, curcumin and resveratrol are in clinical trials for the treatment of colon cancer. GENERAL SIGNIFICANCE The fact that 74% of the cancer drugs are derived from natural sources, naturally occurring polyphenols or its simple analogs with improved bioavailability may have the potential to be cancer drugs in the future.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| | - Rashmi Ramani
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - M Olufemi Suraju
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
24
|
Villani TS, Reichert W, Ferruzzi MG, Pasinetti GM, Simon JE, Wu Q. Chemical investigation of commercial grape seed derived products to assess quality and detect adulteration. Food Chem 2014; 170:271-80. [PMID: 25306345 DOI: 10.1016/j.foodchem.2014.08.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/28/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
Abstract
Fundamental concerns in quality control arise due to increasing use of grape seed extract (GSE) and the complex chemical composition of GSE. Proanthocyanidin monomers and oligomers are the major bioactive compounds in GSE. Given no standardized criteria for quality, large variation exists in the composition of commercial GSE supplements. Using HPLC/UV/MS, 21 commercial GSE containing products were purchased and chemically profiled, major compounds quantitated, and compared against authenticated grape seed extract, peanut skin extract, and pine bark extract. The antioxidant capacity and total polyphenol content for each sample was also determined and compared using standard techniques. Nine products were adulterated, found to contain peanut skin extract. A wide degree of variability in chemical composition was detected in commercial products, demonstrating the need for development of quality control standards for GSE. A TLC method was developed to allow for rapid and inexpensive detection of adulteration in GSE by peanut skin.
Collapse
Affiliation(s)
- Tom S Villani
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States; Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - William Reichert
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Mario G Ferruzzi
- Department of Food Science, Purdue University, West Lafayette, IN 47907, United States
| | - Giulio M Pasinetti
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, United States; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY 10468, United States
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States; Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States.
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, United States; Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
25
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
26
|
Xu Y, Simon JE, Welch C, Wightman JD, Ferruzzi MG, Ho L, Pasinetti GM, Wu Q. Survey of polyphenol constituents in grapes and grape-derived products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10586-10593. [PMID: 21879745 DOI: 10.1021/jf202438d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A rapid and comprehensive qualitative method has been developed to characterize the different classes of polyphenols, such as anthocyanins, flavonols, phenolic acids, and flavanols/proanthocyanidins, in grape products. The detection was achieved by two runs with the same LC gradient in different MS ionization modes and mobile phase modifiers (positive ionization mode and 0.4% trifluoroacetic acid for anthocyanins and flavonols; negative ionization mode and 0.1% formic acid for phenolic acids and flavanols). From an analysis of the MS and UV data and in comparison with the authenticated standards, a total of 53 compounds were identified, including 33 anthocyanins, 12 flavonols, 4 phenolic acids, and 4 flavanols/proanthocyanidins. With the method developed, a survey was then conducted to qualitatively assess the composition of polyphenols among 29 different grape products including original grape, grape juice, grape wine, and grape-derived dietary supplements, and their chemical profiles were systematically compared. This method provided a comprehensive qualitative insight into the composition of polyphenols in grape-derived products.
Collapse
Affiliation(s)
- Yanping Xu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology and Pathology, Rutgers University , 59 Dudley Road, New Brunswick, New Jersey 08901, United States
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vitalini S, Gardana C, Zanzotto A, Simonetti P, Faoro F, Fico G, Iriti M. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J Pineal Res 2011; 51:331-7. [PMID: 21615489 DOI: 10.1111/j.1600-079x.2011.00893.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Melatonin has been reported in a variety of food plants and, consequently, in a number of plant-derived foodstuffs. In grapevine (Vitis vinifera L.) products, it was found in berry exocarp (skin) of different cultivars and monovarietal wines. Herein, we assessed, by means of mass spectrometry, the occurrence of melatonin in all berry tissues (skin, flesh, and seed) at two different phenological stages, pre-véraison and véraison. We detected the highest melatonin content in skin, at pre-véraison, whereas, at véraison, the highest levels were reported in the seed. Furthermore, during ripening, melatonin decreased in skin, while increasing in both seed and flesh. The relative concentrations of melatonin in diverse berry tissues were somewhat different from those of total polyphenols (TP), the latter measured by the Folin-Ciocalteau assay, and more abundant in seed at pre-véraison and in exocarp at véraison. The highest antiradical activity, determined by both DPPH (2,2-diphenyl-1-pycryl hydrazyl) and ABTS [(2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] radical-scavenging assay, was reported at pre-veráison in seed. To the best of our knowledge, we reported, for the first time, the occurrence of melatonin in grape seeds.
Collapse
Affiliation(s)
- Sara Vitalini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|