1
|
Wang B, Fang X, Sun X, Du C, Zhou L, Lv X, Li Y, Li H, Tang W. m 6A demethylase ALKBH5 suppresses proliferation and migration of enteric neural crest cells by regulating TAGLN in Hirschsprung's disease. Life Sci 2021; 278:119577. [PMID: 33961858 DOI: 10.1016/j.lfs.2021.119577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aims to investigate the role of demethylase ALKBH5 mediated demethylation of TAGLN mRNA in the occurrence of Hirschsprung's disease (HSCR), and to clarify how ALKBH5 reduces the m6A level of TAGLN mRNA and inhibits its degradation, thereby inhibiting the proliferation and migration of neural crest cells, and potentially contributing to the occurrence of HSCR. MATERIAL AND METHODS Quantitative real-time PCR (qRT-PCR) and Western-Blot (WB) were conducted to test the expression level of ALKBH5 and TAGLN genes. Cell function assays were adopted to detect cell phenotypes. The qRT-PCR and methylated RNA immunoprecipitation (MeRIP-qPCR) were used to test the regulation of TAGLN by ALKBH5. RESULTS 1. Compared with control intestinal tissue, the expression level of TAGLN and ALKBH5 in the aganglionic intestinal tissue of HSCR is increased. 2. The MeRIP-PCR and dualluciferase report confirmed that ALKBH5 could bind to m6A sites of TAGLN mRNA and reduce the m6A level of TAGLN mRNA. 3. In vitro cell experiments confirmed that overexpression of ALKBH5 can inhibit the degradation of TAGLN mRNA, increase the expression of TAGLN, thereby inhibiting cell proliferation and migration. 4. A zebrafish model of ALKBH5 overexpression was constructed. Studies have shown that ALKBH5 could inhibit the proliferation and migration of zebrafish enteric neurons. CONCLUSIONS ALKBH5 could demethylate TAGLN mRNA and up-regulate TAGLN expression, leading to the inhibition of proliferation and migration of enteric neural crest cells and contributing to the occurrence of HSCR.
Collapse
Affiliation(s)
- Binyu Wang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiang Fang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xinhe Sun
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Chunxia Du
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiurui Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China; School of Medicine & Dentistry, University of Rochester NY 14642, NY, USA
| | - Yuhan Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
2
|
Seizures in steroid-responsive encephalopathy. Neurol Sci 2020; 42:521-530. [PMID: 33219869 DOI: 10.1007/s10072-020-04891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
Steroid-responsive encephalopathy is a general term for diseases that are characterized by diffuse brain injury and respond well to corticosteroids or immunosuppressive agents, including Hashimoto's encephalopathy (HE), limbic encephalitis (LE), systemic lupus erythematosus encephalopathy (SLEE), antineutrophil cytoplasmic antibodies (ANCA)-associated systemic vasculitis encephalopathy (AASV), viral encephalitis (VE), and primary central nervous system lymphoma (PCNSL). Epilepsy and status epilepticus are the main manifestations of steroid-responsive encephalopathy. The spectrum of "autoimmune epilepsy" diseases, which has been approved by the epilepsy diagnostic recommendations of the International Antiepileptic League, is characterized by a high prevalence of epilepsy in central nervous system (CNS) autoimmune diseases and a variety of neuron-specific autoantibodies. Steroid-responsive encephalopathy with different causes may have different pathogeneses and has been suggested to be associated with some internal commonality producing seizure as the main symptom. Determining the regularity of seizures caused by steroid-responsive encephalopathy and implementing appropriate measures will help us improve the prognosis of patients. This paper summarizes the epidemiology, seizure onset, seizure type, and other characteristics of seizures in steroid-responsive encephalopathy (including HE, LE, SLEE, ANCA-associated systemic vasculitis encephalopathy, VE, and PCNSL) and then discusses the use of antiepileptic drugs to treat steroid-responsive encephalopathy.
Collapse
|
3
|
Benjumea-Cuartas V, Eisermann M, Simonnet H, Hully M, Nabbout R, Desguerre I, Kaminska A. Unilateral predominance of abnormal movements: A characteristic feature of the pediatric anti-NMDA receptor encephalitis? EPILEPSY & BEHAVIOR CASE REPORTS 2017; 7:42-44. [PMID: 28348963 PMCID: PMC5357742 DOI: 10.1016/j.ebcr.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/29/2016] [Accepted: 12/24/2016] [Indexed: 12/27/2022]
Abstract
Anti-NMDA receptor encephalitis is a treatable autoimmune disease characterized by cognitive, motor and psychiatric features that primarily affects young adults and children. We present a case of a 7-year-old boy with asymmetrical (mainly right hemibody) and abnormal polymorphic movements without concomitant scalpictal EEG changes but had background slowing predominating over the left hemisphere. This report illustrates previous descriptions of asymmetric presentation of abnormal movements in pediatric anti-NMDA receptor encephalitis and emphasizes the importance of video-EEG interpreted within the overall clinical context, to differentiate epileptic from non-epileptic abnormal movements in patients with autoimmune encephalitis.
Collapse
Affiliation(s)
| | - Monika Eisermann
- Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, APHP, Paris, France; INSERM U1129, Paris, France; Paris Descartes University, Sorbonne Paris Cité; CEA, Gif sur Yvette, France
| | - Hina Simonnet
- Reference Center for Rare Epilepsies, APHP, Necker-Enfants Malades Hospital, Paris, France
| | - Marie Hully
- Reference Center for Rare Epilepsies, APHP, Necker-Enfants Malades Hospital, Paris, France
| | - Rima Nabbout
- INSERM U1129, Paris, France; Paris Descartes University, Sorbonne Paris Cité; CEA, Gif sur Yvette, France; Department of Pediatric Neurology, APHP, Necker-Enfants Malades Hospital, Paris, France; Reference Center for Rare Epilepsies, APHP, Necker-Enfants Malades Hospital, Paris, France
| | - Isabelle Desguerre
- Reference Center for Rare Epilepsies, APHP, Necker-Enfants Malades Hospital, Paris, France
| | - Anna Kaminska
- Department of Clinical Neurophysiology, Necker-Enfants Malades Hospital, APHP, Paris, France; INSERM U1129, Paris, France; Paris Descartes University, Sorbonne Paris Cité; CEA, Gif sur Yvette, France
| |
Collapse
|