1
|
Bergamini G, Coloma P, Massinet H, Steiner MA. What evidence is there for implicating the brain orexin system in neuropsychiatric symptoms in dementia? Front Psychiatry 2022; 13:1052233. [PMID: 36506416 PMCID: PMC9732550 DOI: 10.3389/fpsyt.2022.1052233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
Neuropsychiatric symptoms (NPS) affect people with dementia (PwD) almost universally across all stages of the disease, and regardless of its exact etiology. NPS lead to disability and reduced quality of life of PwD and their caregivers. NPS include hyperactivity (agitation and irritability), affective problems (anxiety and depression), psychosis (delusions and hallucinations), apathy, and sleep disturbances. Preclinical studies have shown that the orexin neuropeptide system modulates arousal and a wide range of behaviors via a network of axons projecting from the hypothalamus throughout almost the entire brain to multiple, even distant, regions. Orexin neurons integrate different types of incoming information (e.g., metabolic, circadian, sensory, emotional) and convert them into the required behavioral output coupled to the necessary arousal status. Here we present an overview of the behavioral domains influenced by the orexin system that may be relevant for the expression of some critical NPS in PwD. We also hypothesize on the potential effects of pharmacological interference with the orexin system in the context of NPS in PwD.
Collapse
Affiliation(s)
- Giorgio Bergamini
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Preciosa Coloma
- Clinical Science, Global Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Helene Massinet
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | |
Collapse
|
2
|
Sunagawa M, Takayama Y, Kato M, Tanaka M, Fukuoka S, Okumo T, Tsukada M, Yamaguchi K. Kampo Formulae for the Treatment of Neuropathic Pain ∼ Especially the Mechanism of Action of Yokukansan ∼. Front Mol Neurosci 2021; 14:705023. [PMID: 34970116 PMCID: PMC8712661 DOI: 10.3389/fnmol.2021.705023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Kampo medicine has been practiced as traditional medicine (TM) in Japan. Kampo medicine uses Kampo formulae that are composed of multiple crude drugs to make Kampo formulae. In Japan, Kampo formulae are commonly used instead of or combined with Western medicines. If drug therapy that follows the guidelines for neuropathic pain does not work or cannot be taken due to side effects, various Kampo formulae are considered as the next line of treatment. Since Kampo formulae are composed of two or more kinds of natural crude drugs, and their extracts contain many ingredients with pharmacological effects, one Kampo formula usually has multiple effects. Therefore, when selecting a formula, we consider symptoms other than pain. This review outlines the Kampo formulae that are frequently used for pain treatment and their crude drugs and the basic usage of each component. In recent years, Yokukansan (YKS) has become one of the most used Kampo formulae for pain treatment with an increasing body of baseline research available. We outline the known and possible mechanisms by which YKS exerts its pharmacologic benefits as an example of Kampo formulae's potency and holistic healing properties.
Collapse
Affiliation(s)
- Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasunori Takayama
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Midori Tanaka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Seiya Fukuoka
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
- Department of Ophthalmology, School of Medicine, Showa University, Tokyo, Japan
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Kojiro Yamaguchi
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
3
|
Regulatory Role of Orexin in the Antistress Effect of "Press Tack Needle" Acupuncture Treatment. Healthcare (Basel) 2021; 9:healthcare9050503. [PMID: 33925438 PMCID: PMC8146164 DOI: 10.3390/healthcare9050503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this research was to investigate the antistress effect of press tack needle (PTN) acupuncture treatment using rats with social isolation stress (SIS). Rats were divided into non-stress group (Grouped+sham), stress group (SIS+sham), and PTN-treated SIS group (SIS+PTN). Rats in the SIS+PTN and SIS+sham groups were housed alone for eight days. For the SIS+PTN group, a PTN (length, 0.3 or 1.2 mm) was fixed on the GV20 acupoint on day 7. We measured stress behavior based on the time the rats showed aggressive behavior and the levels of plasma corticosterone and orexin A on day 8. In addition, the orexin-1 receptor or orexin-2 receptor antagonist was administered to rats that were exposed to SIS. The duration of aggressive behavior was significantly prolonged in the SIS+sham group, and the prolonged duration was inhibited in the SIS+PTN (1.2 mm) group. The levels of plasma corticosterone and orexin A were significantly increased in the SIS+sham group; however, these increases were inhibited in the SIS+PTN group. The aggressive behavior was significantly reduced after the orexin-2 receptor antagonist was administered. These findings suggest that PTN treatment at GV20 may have an antistress effect, and the control of orexin is a mechanism underlying this phenomenon.
Collapse
|
4
|
Analyses of the possible anti-tumor effect of yokukansan. J Nat Med 2019; 73:468-479. [PMID: 30739283 DOI: 10.1007/s11418-019-01283-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 02/08/2023]
Abstract
The Kampo medicine yokukansan (YKS) has a wide variety of properties such as anxiolytic, anti-inflammatory and analgesic effects, and is also thought to regulate tumor suppression. In this study, we investigated the anti-tumor effect of YKS. We used Lewis lung carcinoma (LLC)-bearing mice that were fed food pellets containing YKS and then performed a fecal microbiota analysis, a microarray analysis for microRNAs (miRNAs) and an in vitro anti-tumor assay. The fecal microbiota analysis revealed that treatment with YKS partly reversed changes in the microbiota composition due to LLC implantation. Furthermore, a miRNA array analysis using blood serum showed that treatment with YKS restored the levels of miR-133a-3p/133b-3p, miR-1a-3p and miR-342-3p following LLC implantation to normal levels. A TargetScan analysis revealed that the epidermal growth factor receptor 1 signaling pathway is one of the major target pathways for these miRNAs. Furthermore, treatment with YKS restored the levels of miR-200b-3p and miR-200c-3p, a recognized mediator of cancer progression and controller of emotion, in the hypothalamus of mice bearing LLC. An in vitro assay revealed that a mixture of pachymic acid, saikosaponins a and d and isoliquiritigenin, which are all contained in YKS, exerted direct and additive anti-tumor effects. The present findings constitute novel evidence that YKS may exert an anti-tumor effect by reversing changes in the fecal microbiota and miRNAs circulating in the blood serum and hypothalamus, and the compounds found in YKS could have direct and additive anti-tumor effects.
Collapse
|
5
|
Potential Application of Yokukansan as a Remedy for Parkinson’s Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018. [DOI: 10.1155/2018/1875928
expr 870091642 + 807102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Parkinson’s disease (PD), the second most common progressive neurodegenerative disorder, is characterized by complex motor and nonmotor symptoms. The clinical diagnosis of PD is defined by bradykinesia and other cardinal motor features, although several nonmotor symptoms are also related to disability, an impaired quality of life, and shortened life expectancy. Levodopa, which is used as a standard pharmacotherapy for PD, has limitations including a short half-life, fluctuations in efficacy, and dyskinesias with long-term use. There have been efforts to develop complementary and alternative therapies for incurable PD. Yokukansan (YKS) is a traditional herbal medicine that is widely used for treating neurosis, insomnia, and night crying in children. The clinical efficacy of YKS for treating behavioral and psychological symptoms, such as delusions, hallucinations, and impaired agitation/aggression subscale and activities of daily living scores, has mainly been investigated in the context of neurological disorders such as PD, Alzheimer’s disease, and other psychiatric disorders. Furthermore, YKS has previously been found to improve clinical symptoms, such as sleep disturbances, neuropsychiatric and cognitive impairments, pain, and tardive dyskinesia. Preclinical studies have reported that the broad efficacy of YKS for various symptoms involves its regulation of neurotransmitters including GABA, serotonin, glutamate, and dopamine, as well as the expression of dynamin and glutamate transporters, and changes in glucocorticoid hormones and enzymes such as choline acetyltransferase and acetylcholinesterase. Moreover, YKS has neuroprotective effects at various cellular levels via diverse mechanisms. In this review, we focus on the clinical efficacy and neuropharmacological effects of YKS. We discuss the possible mechanisms underpinning the effects of YKS on neuropathology and suggest that the multiple actions of YKS may be beneficial as a treatment for PD. We highlight the potential that YKS may serve as a complementary and alternative strategy for the treatment of PD.
Collapse
|
6
|
Jang JH, Jung K, Kim JS, Jung I, Yoo H, Moon C. Potential Application of Yokukansan as a Remedy for Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:1875928. [PMID: 30671124 PMCID: PMC6317124 DOI: 10.1155/2018/1875928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, is characterized by complex motor and nonmotor symptoms. The clinical diagnosis of PD is defined by bradykinesia and other cardinal motor features, although several nonmotor symptoms are also related to disability, an impaired quality of life, and shortened life expectancy. Levodopa, which is used as a standard pharmacotherapy for PD, has limitations including a short half-life, fluctuations in efficacy, and dyskinesias with long-term use. There have been efforts to develop complementary and alternative therapies for incurable PD. Yokukansan (YKS) is a traditional herbal medicine that is widely used for treating neurosis, insomnia, and night crying in children. The clinical efficacy of YKS for treating behavioral and psychological symptoms, such as delusions, hallucinations, and impaired agitation/aggression subscale and activities of daily living scores, has mainly been investigated in the context of neurological disorders such as PD, Alzheimer's disease, and other psychiatric disorders. Furthermore, YKS has previously been found to improve clinical symptoms, such as sleep disturbances, neuropsychiatric and cognitive impairments, pain, and tardive dyskinesia. Preclinical studies have reported that the broad efficacy of YKS for various symptoms involves its regulation of neurotransmitters including GABA, serotonin, glutamate, and dopamine, as well as the expression of dynamin and glutamate transporters, and changes in glucocorticoid hormones and enzymes such as choline acetyltransferase and acetylcholinesterase. Moreover, YKS has neuroprotective effects at various cellular levels via diverse mechanisms. In this review, we focus on the clinical efficacy and neuropharmacological effects of YKS. We discuss the possible mechanisms underpinning the effects of YKS on neuropathology and suggest that the multiple actions of YKS may be beneficial as a treatment for PD. We highlight the potential that YKS may serve as a complementary and alternative strategy for the treatment of PD.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Department of Korean Internal Medicine, Dunsan Korean Medical Hospital, Daejeon University, Daejeon 35235, Republic of Korea
| | - Kyungsook Jung
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Joong-Sun Kim
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Inchul Jung
- Department of Korean Neuropsychology, Dunsan Korean Medicine Hospital, Daejeon University, Daejeon 35235, Republic of Korea
| | - Horyong Yoo
- Department of Korean Internal Medicine, Dunsan Korean Medical Hospital, Daejeon University, Daejeon 35235, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Kanada Y, Katayama A, Ikemoto H, Takahashi K, Tsukada M, Nakamura A, Ishino S, Hisamitsu T, Sunagawa M. Inhibitory effect of the Kampo medicinal formula Yokukansan on acute stress-induced defecation in rats. Neuropsychiatr Dis Treat 2018; 14:937-944. [PMID: 29670354 PMCID: PMC5896650 DOI: 10.2147/ndt.s156795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder with symptoms of abnormal defecation and abdominal discomfort. Psychological factors are well known to be involved in onset and exacerbation of IBS. A few studies have reported effectiveness of traditional herbal (Kampo) medicines in IBS treatment. Yokukansan (YKS) has been shown to have anti-stress and anxiolytic effects. We investigated the effect of YKS on defecation induced by stress and involvement of oxytocin (OT), a peptide hormone produced by the hypothalamus, in order to elucidate the mechanism of YKS action. METHODS AND RESULTS Male Wistar rats were divided into four groups; control, YKS (300 mg/kg PO)-treated non-stress (YKS), acute stress (Stress), and YKS (300 mg/kg PO)-treated acute stress (Stress+YKS) groups. Rats in the Stress and Stress+YKS groups were exposed to a 15-min psychological stress procedure involving novel environmental stress. Levels of plasma OT in the YKS group were significantly higher compared with those in the Control group (P < 0.05), and OT levels in the Stress+YKS group were remarkably higher than those in the other groups (P < 0.01). Next, rats were divided into four groups; Stress, Stress+YKS, Atosiban (OT receptor antagonist; 1 mg/kg IP)-treated Stress+YKS (Stress+YKS+B), and OT (0.04 mg/kg IP)-treated acute stress (Stress+OT) groups. Rats were exposed to acute stress as in the previous experiment, and defecation during the stress load was measured. Administration of YKS or OT significantly inhibited defecation; however, administration of Atosiban partially abolished the inhibitory effect of YKS. Finally, direct action of YKS on motility of isolated colon was assessed. YKS (1 mg/mL, 5 mg/mL) did not inhibit spontaneous contraction. CONCLUSION These results suggested that YKS influences stress-induced defecation and that increased OT secretion may be a mechanism underlying this phenomenon.
Collapse
Affiliation(s)
- Yasuaki Kanada
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Ayami Katayama
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Hideshi Ikemoto
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Kana Takahashi
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Akio Nakamura
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Shogo Ishino
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
9
|
Katayama A, Kanada Y, Tsukada M, Akanuma Y, Takemura H, Ono T, Suga H, Mera H, Hisamitsu T, Sunagawa M. Yokukansan (Kampo medicinal formula) prevents the development of morphine tolerance by inhibiting the secretion of orexin A. Integr Med Res 2018; 7:141-148. [PMID: 29989049 PMCID: PMC6035380 DOI: 10.1016/j.imr.2018.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/18/2018] [Accepted: 02/28/2018] [Indexed: 01/28/2023] Open
Abstract
Background Yokukansan (YKS), a traditional herbal (Kampo) medicine consisting of seven herbs, is effective in the treatment of pain disorders, such as headache, postherpetic neuralgia, fibromyalgia, and trigeminal neuralgia, and we have previously shown it to be effective against morphine analgesic tolerance in rats. It has been reported that orexin receptor antagonists prevent the development of morphine tolerance and that YKS inhibits the secretion of orexin A in the hypothalamus. This study examined whether the inhibition of the secretion of orexin A by YKS is one mechanism underlying its effect against morphine analgesic tolerance. Methods Male Wistar rats were administered a subcutaneous injection of morphine hydrochloride (10 mg/kg/day) for 5 days. One group was preadministered YKS, starting 3 days before the morphine. The withdrawal latency following thermal stimulation was measured daily using a hot plate test. On day 5, the levels of orexin A in the plasma and the midbrain were measured, and the appearance of activated astrocytes in the midbrain was examined by immunofluorescence staining. Results The preadministration of YKS prevented the development of morphine tolerance. The repeated administration of morphine significantly increased the plasma and midbrain levels of orexin A and the activation of astrocytes. These increases were significantly inhibited by the preadministration of YKS. Conclusion These results suggest that the preadministration of YKS attenuated the development of antinociceptive morphine tolerance and that the inhibition of orexin A secretion may be one mechanism underlying this phenomenon.
Collapse
Affiliation(s)
- Ayami Katayama
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yasuaki Kanada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Mana Tsukada
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Yuko Akanuma
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Haruka Takemura
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Takahiro Ono
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Hiroki Suga
- Department of Anesthesiology, Tokyo Metropolitan Health and Medical Corporation Ebara Hospital, Tokyo, Japan
| | - Hitoshi Mera
- Department of Anesthesiology, Tokyo Metropolitan Health and Medical Corporation Ebara Hospital, Tokyo, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Masataka Sunagawa
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|