1
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
2
|
Wang Q, Liu Z, Wang R, Li R, Lian X, Yang Y, Yan J, Yin Z, Wang G, Sun J, Peng Y. Effect of Ginkgo biloba extract on pharmacology and pharmacokinetics of atorvastatin in rats with hyperlipidaemia. Food Funct 2023; 14:3051-3066. [PMID: 36916480 DOI: 10.1039/d2fo03238d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Ginkgo biloba extract (GBE) is a common dietary supplement used by people with dyslipidaemia worldwide to reduce the risk of cardiovascular disease. Many studies have found that GBE itself has a variety of pharmacological activities. However, the role of GBE as an adjunct to conventional therapy with chemical drugs remains controversial. Therefore, this study explored the additional benefits of GBE in the treatment of hyperlipidaemia with statins in terms of both pharmacodynamics and pharmacokinetics. A hyperlipidaemia model was established by feeding rats a high-fat diet for a long time. The animals were treated with atorvastatin only, GBE only, or a combination of atorvastatin and GBE. The results showed that statins combined with GBE could significantly improve the blood lipid parameters, reduce the liver fat content, and reduce the size of adipocytes in abdominal fat. The effect was superior to statin therapy alone. In addition, the combination has shown additional liver protection against possible pathological liver injury or statin-induced liver injury. A lipidomic study showed that GBE could regulate the abnormal lipid metabolism of the liver in hyperlipemia. When statins are combined with GBE, this callback effect introduced by GBE on endogenous metabolism has important implications for resistance to disease progression and statin resistance. Finally, in the presence of GBE, there was a significant increase in plasma statin exposure. These results all confirmed that GBE has incremental benefits as a dietary supplement of statin therapy for dyslipidaemia.
Collapse
Affiliation(s)
- Qingqing Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zihou Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Rui Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Run Li
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Xiaoru Lian
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Yanquan Yang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jiao Yan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Zhiqi Yin
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Jianguo Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| | - Ying Peng
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, China.
| |
Collapse
|
3
|
Li T, Zhang X, Jiang P, Zhang D, Feng L, Lai X, Qin M, Wei Y, Zhang C, Gao Y. Platelet-activating factor receptor antagonists of natural origin for acute ischemic stroke: a systematic review of current evidence. Front Pharmacol 2022; 13:933140. [PMID: 36120362 PMCID: PMC9471864 DOI: 10.3389/fphar.2022.933140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Acute ischemic stroke (AIS) is a common cause of death and long-term disability worldwide. Recent trials of platelet-activating factor receptor antagonists (PAFRA) appeared to indicate that they could play a neuroprotective role in the treatment of AIS; therefore, we conducted a systematic literature review to evaluate the clinical efficacy and safety of PAFRA in patients with AIS. Methods: A systematic literature search was performed in seven electronic databases from inception to 11 March 2022. All randomized controlled trials (RCTs) in which patients were treated with PAFRA strategies within 7 days of stroke onset were included. Modified Rankin Scale (mRS) was selected as the primary outcome of this systematic review. The methodological quality of included studies was assessed based on the Cochrane Collaborations tool. The review protocol was previously registered (PROSPERO CRD42020182075). Results: Fifteen RCTs comprising a total of 3,907 participants were included in this study. The PAFRA-related compounds included natural preparations of terpenoids, flavonoids, and saponins, namely, ginkgo endoterpene diester meglumine (GEDM, seven RCTs), ginkgo biloba dropping pill (GBDP, one RCT), ginkgolide injection (GDI, four RCTs), hesperidin (HES, one RCT), ginsenoside Rd injection (GSRI, one RCT), and hydroxysafflor yellow A (HSYA, one RCT). All studies were conducted in China between 2017 and 2021, employing a two-arm parallel design with sample sizes ranging from 40 to 1,113. Eight studies (53.3%) provided no information on their method of randomization, and only two studies (13.3%) utilized the double-blind design. Treatment was associated with improved clinical outcomes for (1) GEDM, GDI, and GBDP in patients treated with conventional treatment (CM) [GEDM + CM for AIS on mRS: MDmRS = −0.42, 95% CI (−0.47, −0.37), five trials, p < 0.00001; GEDM + CM for AIS on NIHSS: MDNIHSS = −1.02, 95% CI (−1.51, −0.52), four trials, p < 0.0001]; (2) GEDM and GDI in patients treated with neuroprotective agent (NPA) [GEDM + NPA + CM for AIS on mRS: MDmRS = −0.40, 95% CI (−0.54, −0.26), p < 0.00001; GEDM + NPA + CM for AIS on NIHSS: MDNIHSS = −3.93, 95%CI (−7.72, −0.14), p = 0.04]; (3) GBDP in patients treated with CM; (4) GDI and GSRI in patients treated with IV rt-PA therapy (IVT); and (5) HSYA in patients compared with Dengzhan Xixin injection (DZXXI). No access to improved clinical outcome was associated with HES in patients treated with IVT. Seven RCTs reported adverse events (AEs) but found that taking PAFRA-related preparations was not associated with an increased incidence of AEs. Conclusions: This systematic review not only makes an important contribution to the existing body of current evidence but also lays a well-conducted basis for providing opinions and recommendation on the evaluation of PAFRA-based medicine, which could also highlight the need for well-designed clinical trials of PAFRA for AIS to increase the quality of available evidence. Further research is required, using standardized functional outcome measures for AIS, adequate blinding and suitable comparator groups reflecting current best practice.
Collapse
Affiliation(s)
- Tingting Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuebin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ping Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dandan Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Luda Feng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxing Lai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhen Qin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Chi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ying Gao, ; Chi Zhang,
| | - Ying Gao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Ying Gao, ; Chi Zhang,
| |
Collapse
|
4
|
Zhang X, Zhong W, Ma X, Zhang X, Chen H, Wang Z, Lou M. Ginkgolide With Intravenous Alteplase Thrombolysis in Acute Ischemic Stroke Improving Neurological Function: A Multicenter, Cluster-Randomized Trial (GIANT). Front Pharmacol 2021; 12:792136. [PMID: 34925044 PMCID: PMC8681856 DOI: 10.3389/fphar.2021.792136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Background and Purpose: We aimed to investigate the effect of Ginkgolide® treatment on neurological function in patients receiving intravenous (IV) recombinant tissue plasminogen activator (rt-PA). Methods: This cluster randomized controlled trial included acute ischemic stroke patients in 24 centers randomized to intervention of intravenous Ginkgolide® or control group within the first 24 h after IV rt-PA therapy (IVT). Clinical outcome at 90 days was assessed with modified Rankin Scale (mRS) score and dichotomized into good outcome (0-2) and poor outcome (3-6). Hemorrhagic transformation represented the conversion of a bland infarction into an area of hemorrhage by computed tomography. Symptomatic intracerebral hemorrhage (sICH) was defined as cerebral hemorrhagic transformation in combination with clinical deterioration of National Institutes of Health Stroke Scale (NIHSS) score ≥4 points at 7-day or if the hemorrhage was likely to be the cause of the clinical deterioration. We performed logistic regression analysis and propensity score matching analysis to investigate the impact of Ginkgolide® treatment with IV rt-PA on good outcome, hemorrhagic transformation and sICH, respectively. Results: A total of 1113 patients were finally included and 513 (46.1%) were in the intervention group. Patients in the Ginkgolide® group were more likely to have good outcomes (78.6 vs. 66.7%, p < 0.01) and lower rate of sICH (0 vs. 2.72%, p < 0.01), compared with patients in the control group. The intra-cluster correlation coefficient (ICC) for good outcome at 90 days was 0.033. Binary logistic regression analysis revealed that treatment with Ginkgolide® was independently associated with 90-day mRS in patients with IV rt-PA therapy (OR 1.498; 95% CI 1.006-2.029, p = 0.009). After propensity score matching, conditional logistic regression showed intervention with Ginkgolide® was significantly associated with 90-day good outcome (OR 1.513; 95% CI 1.073-2.132, p = 0.018). No significant difference in hemorrhage transformation was seen between the 2 matched cohorts (OR 0.885; 95% CI 0.450-1.741, p = 0.724). Conclusion: Using Ginkgolide® within 24-hour after IV rt-PA is effective and safe and might be recommended in combination with rtPA therapy in acute ischemic stroke. Clinical Trial Registration: http://www.clinicaltrials.gov, identifier NCT03772847.
Collapse
Affiliation(s)
- Xuting Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wansi Zhong
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaodong Ma
- Department of Neurology, Haiyan People's Hospital, Jiaxing, China
| | - Xiaoling Zhang
- Department of Neurology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hongfang Chen
- Department of Neurology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Zhimin Wang
- Department of Neurology, The First People's Hospital of Taizhou, Taizhou, China
| | - Min Lou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Wang X, Lu G, Liu X, Li J, Zhao F, Li K. Assessment of Phytochemicals and Herbal Formula for the Treatment of Depression through Metabolomics. Curr Pharm Des 2021; 27:840-854. [PMID: 33001005 DOI: 10.2174/1381612826666201001125124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
Depression is a widespread and persistent psychiatric disease. Due to various side effects and no curative treatments of conventional antidepressant drugs, botanical medicines have attracted considerable attention as a complementary and alternative approach. The pathogenesis of depression is quite complicated and unclear. Metabolomics is a promising new technique for the discovery of novel biomarkers for exploring the potential mechanisms of diverse diseases and assessing the therapeutic effects of drugs. In this article, we systematically reviewed the study of botanical medicine for the treatment of depression using metabolomics over a period from 2010 to 2019. Additionally, we summarized the potential biomarkers and metabolic pathways associated with herbal medicine treatment for depression. Through a comprehensive evaluation of herbal medicine as novel antidepressants and understanding of their pharmacomechanisms, a new perspective on expanding the application of botanical medicines for the treatment of depression is provided.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guanyu Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhui Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fei Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA 92103, United States
| |
Collapse
|
6
|
Xiang Y, Yang N, Guo Z, Zhou L, Guo JJ, Hu M. Cost-Effectiveness Analysis of Ginkgolide Injection in the Treatment of Ischemic Stroke Based on a Randomized Clinical Trial. J Altern Complement Med 2021; 27:331-341. [PMID: 33571026 PMCID: PMC8064937 DOI: 10.1089/acm.2020.0455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective: To evaluate the long-term cost-effectiveness of ginkgolide plus aspirin compared with placebo plus aspirin treatment of ischemic stroke. Background: Stroke is the leading cause of death and long-term disability in China, with high incidence, high mortality, and heavy disease burden. In addition to Western medicines, Chinese clinical guidelines for diagnosis and treatment of acute ischemic stroke recommend application of Chinese patent medicines. Ginkgolide injection is commonly used in the clinical treatment of stroke in China to promote blood circulation and remove blood stasis. The economy of ginkgolide injection needs to be evaluated. Methods: A Markov model was constructed consisting of four disease states: no significant disability, disability, stroke recurrence, and death. Therapeutic data were taken from the Ginkgolide in Ischemic Stroke Patients with Large Artery Atherosclerosis (GISAA) study. Utilities and transition probabilities were extracted from the literature. Cost data were obtained from the China Health Statistics Yearbook and hospital record survey. Expected costs and quality-adjusted life-years (QALYs) of 13 years of cycles (calculated by average age of subjects and Chinese life expectancy) were calculated through TreeAge Pro11 software. The willingness-to-pay (WTP) threshold was set as the Chinese per capita Gross Domestic Product (GDP) in 2019, CN¥70,892/QALY. The results were analyzed by single factor and probability sensitivity analyses. Results: Ginkgolide plus aspirin had a higher expected per-patient cost than placebo plus aspirin but a higher QALYs. Compared with placebo plus aspirin, ginkgolide plus aspirin produced an incremental cost-effectiveness ratio of CN¥14,866.06/QALY, which is below the WTP threshold. Probabilistic sensitivity analysis suggested the acceptability of ginkgolide plus aspirin was higher than that of placebo plus aspirin. Conclusions: The present cost-effectiveness analysis showed that addition of ginkgolides to conventional treatment is cost-effective at a threshold the Chinese per capita GDP.
Collapse
Affiliation(s)
- Yuliang Xiang
- Pharmaceutical Policy and Pharmacoeconomics Research Center, Sichuan University West China School of Pharmacy, Chengdu, China
| | - Nan Yang
- Pharmaceutical Policy and Pharmacoeconomics Research Center, Sichuan University West China School of Pharmacy, Chengdu, China
| | - Zhaoting Guo
- Pharmaceutical Policy and Pharmacoeconomics Research Center, Sichuan University West China School of Pharmacy, Chengdu, China
| | - Li Zhou
- Pharmaceutical Policy and Pharmacoeconomics Research Center, Sichuan University West China School of Pharmacy, Chengdu, China
| | - Jeff Jianfei Guo
- Division of Pharmacy Practice and Administrative Sciences, College of Pharmacy, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Ming Hu
- Pharmaceutical Policy and Pharmacoeconomics Research Center, Sichuan University West China School of Pharmacy, Chengdu, China
| |
Collapse
|
7
|
Feng Z, Sun Q, Chen W, Bai Y, Hu D, Xie X. The neuroprotective mechanisms of ginkgolides and bilobalide in cerebral ischemic injury: a literature review. Mol Med 2019; 25:57. [PMID: 31864312 PMCID: PMC6925848 DOI: 10.1186/s10020-019-0125-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023] Open
Abstract
The incidence and mortality of strokes have increased over the past three decades in China. Ischemic strokes can cause a sequence of detrimental events in patients, including increased permeability and dysfunction of the blood-brain barrier, brain edema, metabolic disturbance, endoplasmic reticulum stress, autophagy, oxidative stress, inflammation, neuron death and apoptosis, and cognitive impairment. Thrombolysis using recombinant tissue plasminogen activator (rtPA) and mechanical embolectomy with a retrievable stent are two recognized strategies to achieve reperfusion after a stroke. Nevertheless, rtPA has a narrow therapeutic timeframe, and mechanical embolectomy has limited rates of good neurological outcomes. EGb761 is a standardized and extensively studied extract of Ginkgo biloba leaves. The ginkgolides and bilobalide that constitute a critical part of EGb761 have demonstrated protective properties towards cerebral injury. Ginkgolides include Ginkgolide A (GA), Ginkgolide B (GB), Ginkgolide C (GC), Ginkgolide J (GJ), Ginkgolide K (GK), Ginkgolide L (GL), and Ginkgolide M (GM). This review seeks to elucidate the neuroprotective effects and mechanisms of ginkgolides, especially GA and GB, and bilobalide in cerebral injury following ischemic strokes.
Collapse
Affiliation(s)
- Zili Feng
- School of Bioscience and Engineering, Shaanxi University of Technology, No.1 Donghuan 1st Road, Hanzhong, 732001, People's Republic of China.
| | - Qian Sun
- School of Bioscience and Engineering, Shaanxi University of Technology, No.1 Donghuan 1st Road, Hanzhong, 732001, People's Republic of China
| | - Wang Chen
- School of Bioscience and Engineering, Shaanxi University of Technology, No.1 Donghuan 1st Road, Hanzhong, 732001, People's Republic of China
| | - Yu Bai
- School of Bioscience and Engineering, Shaanxi University of Technology, No.1 Donghuan 1st Road, Hanzhong, 732001, People's Republic of China
| | - Daihua Hu
- School of Bioscience and Engineering, Shaanxi University of Technology, No.1 Donghuan 1st Road, Hanzhong, 732001, People's Republic of China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, People's Republic of China
| |
Collapse
|
8
|
Deng FL, Pan JX, Zheng P, Xia JJ, Yin BM, Liang WW, Li YF, Wu J, Xu F, Wu QY, Qu CH, Li W, Wang HY, Xie P. Metabonomics reveals peripheral and central short-chain fatty acid and amino acid dysfunction in a naturally occurring depressive model of macaques. Neuropsychiatr Dis Treat 2019; 15:1077-1088. [PMID: 31118641 PMCID: PMC6501704 DOI: 10.2147/ndt.s186071] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Depression is a complex psychiatric disorder. Various depressive rodent models are usually constructed based on different pathogenesis hypotheses. MATERIALS AND METHODS Herein, using our previously established naturally occurring depressive (NOD) model in a non-human primate (cynomolgus monkey, Macaca fascularis), we performed metabolomics analysis of cerebrospinal fluid (CSF) from NOD female macaques (N=10) and age-and gender-matched healthy controls (HCs) (N=12). Multivariate statistical analysis was used to identify the differentially expressed metabolites between the two groups. Ingenuity Pathways Analysis and MetaboAnalyst were applied for predicted pathways and biological functions analysis. RESULTS Totally, 37 metabolites responsible for discriminating the two groups were identified. The NOD macaques were mainly characterized by perturbations of fatty acid biosynthesis, ABC transport system, and amino acid metabolism (eg, aspartate, glycine, serine, and threonine metabolism). Interestingly, we found that eight altered CSF metabolites belonging to short-chain fatty acids and amino acids were also observed in the serum of NOD macaques (N=13 per group). CONCLUSION Our findings suggest that peripheral and central short-chain fatty acids and amino acids are implicated in the onset of depression.
Collapse
Affiliation(s)
- Feng-Li Deng
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,School of Public Health and Management, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun-Xi Pan
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,The First Affiliated Hospital of Kunming Medical University, Kunming 650032, People's Republic of China
| | - Peng Zheng
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jin-Jun Xia
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Bang-Min Yin
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Wei-Wei Liang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Yi-Fan Li
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jing Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Fan Xu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Qing-Yuan Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China, .,Department of Neurology, Three Gorges Central Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chao-Hua Qu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Wei Li
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402460, People's Republic of China, .,Chongqing Key Laboratory of Neurobiology, Chongqing 400016, People's Republic of China, .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, People's Republic of China,
| |
Collapse
|