1
|
Rao IY, Hanson LR, Johnson JC, Rosenbloom MH, Frey WH. Brain Glucose Hypometabolism and Iron Accumulation in Different Brain Regions in Alzheimer's and Parkinson's Diseases. Pharmaceuticals (Basel) 2022; 15:551. [PMID: 35631378 PMCID: PMC9143620 DOI: 10.3390/ph15050551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine the relationship between the presence of glucose hypometabolism (GHM) and brain iron accumulation (BIA), two potential pathological mechanisms in neurodegenerative disease, in different regions of the brain in people with late-onset Alzheimer's disease (AD) or Parkinson's disease (PD). Studies that conducted fluorodeoxyglucose positron emission tomography (FDG-PET) to map GHM or quantitative susceptibility mapping-magnetic resonance imaging (QSM-MRI) to map BIA in the brains of patients with AD or PD were reviewed. Regions of the brain where GHM or BIA were reported in each disease were compared. In AD, both GHM and BIA were reported in the hippocampus, temporal, and parietal lobes. GHM alone was reported in the cingulate gyrus, precuneus and occipital lobe. BIA alone was reported in the caudate nucleus, putamen and globus pallidus. In PD, both GHM and BIA were reported in thalamus, globus pallidus, putamen, hippocampus, and temporal and frontal lobes. GHM alone was reported in cingulate gyrus, caudate nucleus, cerebellum, and parietal and occipital lobes. BIA alone was reported in the substantia nigra and red nucleus. GHM and BIA are observed independent of one another in various brain regions in both AD and PD. This suggests that GHM is not always necessary or sufficient to cause BIA and vice versa. Hypothesis-driven FDG-PET and QSM-MRI imaging studies, where both are conducted on individuals with AD or PD, are needed to confirm or disprove the observations presented here about the potential relationship or lack thereof between GHM and BIA in AD and PD.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - Julia C. Johnson
- HealthPartners Struthers Parkinson’s Center, Minneapolis, MN 55427, USA;
| | - Michael H. Rosenbloom
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - William H. Frey
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
2
|
Wu J, Guo T, Zhou C, Gao T, Guan X, Xuan M, Gu Q, Huang P, Song Z, Xu X, Zhang M. Disrupted interhemispheric coordination with unaffected lateralization of global eigenvector centrality characterizes hemiparkinsonism. Brain Res 2020; 1742:146888. [PMID: 32439342 DOI: 10.1016/j.brainres.2020.146888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/12/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The motor dysfunctions always affect hemi-body first in Parkinson's disease (PD). However, the interhemispheric relationships in patients with only unilateral motor impairment were barely known to date. We aimed to investigate the interhemispheric functions using resting-state functional Magnetic resonance imaging (RS-fMRI) for further understanding the pathogenesis of PD. METHODS Forty-three unilateral-symptomatic PD patients (UPD, Hoehn-Yahr staging scale, H-Y: 1-1.5), and 54 age-, gender-, education-matched normal controls (NC) were recruited. All subjects underwent MRI scanning and clinical evaluations. The interhemispheric coordination (Voxel-Mirrored Homotopic Connectivity, VMHC) and hemispheric dominance pattern (laterality index of eigenvector centrality mapping, LI-ECM) were calculated. Afterwards, correlation analyses and receiver operating characteristic (ROC) curve analysis were employed. RESULTS Compared with NC, UPD group showed significantly decreased VMHC in bilateral sensorimotor regions which was negatively correlated with the motor score. Furthermore, at the cut-off homotopic connectivity of 0.604, statistically significant ability of VMHC to discriminate UPD from NC with area under ROC curve (AUC) = 0.759, p < 0.001; specificity = 74.4%; sensitivity = 68.5% was observed. No difference was detected in UPD patients as for ECM and LI-ECM. CONCLUSIONS The disrupted interhemispheric coordination in bilateral sensorimotor regions may have significant implications for elucidating the mechanisms underlying the hemiparkinsonism and enabling the uncovering of complex mechanisms of PD.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Min Xuan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Zhe Song
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, China.
| |
Collapse
|
3
|
Li G, Ma J, Cui S, He Y, Xiao Q, Liu J, Chen S. Parkinson's disease in China: a forty-year growing track of bedside work. Transl Neurodegener 2019; 8:22. [PMID: 31384434 PMCID: PMC6668186 DOI: 10.1186/s40035-019-0162-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/16/2019] [Indexed: 01/17/2023] Open
Abstract
The number and health burden of Parkinson's disease increase rapidly in China. It is estimated that China will have nearly half of the Parkinson's disease population in the world in 2030. In this review, we present an overview of epidemiology and health economics status of Parkinson's disease across China and discuss the risk factors of Parkinson's disease and related complications. From the view of clinical research, we also discuss the current status of clinical trials, diagnostic biomarkers, treatment of Parkinson's disease, tertiary network and post-occupation education in Chinese Parkinson's disease clinics.
Collapse
Affiliation(s)
- Gen Li
- 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianfang Ma
- 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shishuang Cui
- 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yixi He
- 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Xiao
- 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- 1Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.,2Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu Province, China
| |
Collapse
|