1
|
Xin Y, Zhou S, Chu T, Zhou Y, Xu A. Protective Role of Electroacupuncture Against Cognitive Impairment in Neurological Diseases. Curr Neuropharmacol 2025; 23:145-171. [PMID: 38379403 PMCID: PMC11793074 DOI: 10.2174/1570159x22999240209102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 02/22/2024] Open
Abstract
Many neurological diseases can lead to cognitive impairment in patients, which includes dementia and mild cognitive impairment and thus create a heavy burden both to their families and public health. Due to the limited effectiveness of medications in treating cognitive impairment, it is imperative to develop alternative treatments. Electroacupuncture (EA), a required method for Traditional Chinese Medicine, has the potential treatment of cognitive impairment. However, the molecular mechanisms involved have not been fully elucidated. Considering the current research status, preclinical literature published within the ten years until October 2022 was systematically searched through PubMed, Web of Science, MEDLINE, Ovid, and Embase. By reading the titles and abstracts, a total of 56 studies were initially included. It is concluded that EA can effectively ameliorate cognitive impairment in preclinical research of neurological diseases and induce potentially beneficial changes in molecular pathways, including Alzheimer's disease, vascular cognitive impairment, chronic pain, and Parkinson's disease. Moreover, EA exerts beneficial effects through the same or diverse mechanisms for different disease types, including but not limited to neuroinflammation, neuronal apoptosis, neurogenesis, synaptic plasticity, and autophagy. However, these findings raise further questions that need to be elucidated. Overall, EA therapy for cognitive impairment is an area with great promise, even though more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Yueyang Xin
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siqi Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Chu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aijun Xu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
3
|
XU Y, WU C, YU W, GUO H, LU L, XU N, TANG C. Systematic review and Meta-analysis of brain plasticity associated with electroacupuncture in experimental ischemic stroke. J TRADIT CHIN MED 2024; 44:859-870. [PMID: 39380217 PMCID: PMC11462533 DOI: 10.19852/j.cnki.jtcm.20240828.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/27/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To systematically evaluate the role of electroacupuncture in maintaining brain plasticity in ischemic stroke mediated brain damage. METHODS We searched for all relevant trials published through Oct 7, 2022 from seven databases. Metho-dological quality was assessed using the CAMARADES Risk of Bias Tool. A Meta-analysis of comparative effects was performed using Review Manager v.5.3 software. RESULTS A total of 101 studies involving 2148 animals were included. For most studies, primary outcomes results of the Meta-analysis indicate that EA significantly improved ischemic stroke rat's postsynaptic density thickness [Standardized Mean Difference (SMD) = 1.41, 95% confidence interval (CI) (0.59, 2.23), P = 0.0008], numerical density of synapses [SMD = 1.55, 95% CI (0.48, 2.63), P = 0.005] compared with non-EA-treated. Similarly, EA could improve parts of biomarkers of synapses, neurogenesis, angiogenesis and neurotrophin activity than the control group (P < 0.05). CONCLUSION The existing evidence suggests EA regulating ischemic stroke may be through brain plasticity. More rigorous and high quality studies should be conducted in the future.
Collapse
Affiliation(s)
- Yingshan XU
- 1 College of Acupuncture and Massage, Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xianyang 712046, China
| | - Chunxiao WU
- 2 Department of Encephalopathy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Wei YU
- 3 Department of Obstetrics and Gynecology, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen 518034, China
| | - Hongji GUO
- 4 Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Liming LU
- 4 Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Nenggui XU
- 4 Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chunzhi TANG
- 4 Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
4
|
Tsai YT, Cheng CY. Electroacupuncture at the Dazhui and Baihui acupoints and different frequencies (10 and 50 Hz) protects against apoptosis by up-regulating ERK1/2-mediated signaling in rats after global cerebral ischemia. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:706-716. [PMID: 38645497 PMCID: PMC11024414 DOI: 10.22038/ijbms.2024.72279.15716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Objectives This study assessed the effects of electroacupuncture (EA) stimulation at different frequencies at the Dazhui and Baihui acupoints in the subacute phase after transient global cerebral ischemia (GCI). Materials and Methods Rats were subjected to GCI for 25 min, followed by reperfusion for 7 days. EA at acupoints was performed at 10, 30, or 50 Hz, 1 day after reperfusion and then once daily for 6 consecutive days. Results EA at acupoints at 10 and 50 Hz effectively down-regulated apoptosis in the hippocampal cornu ammonis 1(CA1) area and ameliorated memory deficits. Moreover, EA treatment at 10 and 50 Hz markedly increased phospho (p)-extracellular signal-regulated protein kinase 1/2 (ERK1/2), p-ERK1/2/neuronal nuclei (NeuN), p-cAMP response element-binding protein (CREB)/p-ERK1/2, B-cell lymphoma-2 (Bcl-2)/p-CREB, and X-linked inhibitor of apoptosis protein/NeuN expression levels and decreased Bcl-2 homologous antagonist/killer, second mitochondria-derived activator of caspase/direct inhibitor of apoptosis-binding protein with low pI, cytochrome c, cleaved caspase-3, and apoptosis-inducing factor expression levels. Furthermore, 10-Hz EA treatment effectively increased p-p38 mitogen-activated protein kinase (MAPK), p-p38 MAPK/NeuN, and p-CREB/p-p38 MAPK expression levels. Pretreatment with U0126 (ERK1/2 inhibitor) completely abrogated the effects of 10- and 50-Hz EA treatments on the aforementioned protein expression levels. Similarly, pretreatment with SB203580 (p38 MAPK inhibitor) completely abrogated the effects of 10-Hz treatment on the aforementioned protein expression levels. Conclusion The effects of 10- and 50-Hz EA treatments on mitochondria-related apoptosis can be attributed to the activation of ERK1/2/p38 MAPK/CREB/Bcl-2- and ERK1/2/CREB/Bcl-2-mediated signaling, respectively, in the hippocampal CA1 area at 7 days after transient GCI.
Collapse
Affiliation(s)
- Yueh-Ting Tsai
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Traditional Chinese Medicine, Kuang Tien General Hospital, Taichung 43303, Taiwan
| | - Chin-Yi Cheng
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 42056, Taiwan
| |
Collapse
|
5
|
Seyedaghamiri F, Mahmoudi J, Hosseini L, Sadigh-Eteghad S, Farhoudi M. Possible Engagement of Nicotinic Acetylcholine Receptors in Pathophysiology of Brain Ischemia-Induced Cognitive Impairment. J Mol Neurosci 2021; 72:642-652. [PMID: 34596872 DOI: 10.1007/s12031-021-01917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Post-stroke disabilities like cognitive impairment impose are complex conditions with great economic burdens on health care systems. For these comorbidities, no effective therapies have been identified yet. Nicotinic acetylcholine receptors (nAChRs) are multifunctional receptors participating in various behavioral and neurobiological functions. During brain ischemia, the increased glutamate accumulation leads to neuronal excitotoxicity as well as mitochondrial dysfunction. These abnormalities then cause the increased levels of oxidants, which play key roles in neuronal death and apoptosis in the infarct zone. Additionally, recall of cytokines and inflammatory factors play a prominent role in the exacerbation of ischemic injury. As well, neurotrophic factors' insufficiency results in synaptic dysfunction and cognitive impairments in ischemic brain. Of note, nAChRs through various signaling pathways can participate in therapeutic approaches such as cholinergic system's stimulation, and reduction of excitotoxicity, inflammation, apoptosis, oxidative stress, mitochondrial dysfunction, and autophagy. Moreover, the possible roles of nAChRs in neurogenesis, synaptogenesis, and stimulation of neurotrophic factors expression have been reported previously. On the other hand, the majority of the above-mentioned mechanisms were found to be common in both brain ischemia pathogenesis and cognitive function tuning. Therefore, it seems that nAChRs might be known as key regulators in the control of ischemia pathology, and their modulation could be considered as a new avenue in the multi-target treatment of post-stroke cognitive impairment.
Collapse
Affiliation(s)
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Hosseini
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Xu M, Zi Y, Wu J, Xu N, Lu L, Liu J, Yu Y, Mo H, Wen W, Tang X, Fan W, Zhang Y, Liu C, Yi W, Wang L. Effect of opposing needling on motor cortex excitability in healthy participants and in patients with post-stroke hemiplegia: study protocol for a single-blind, randomised controlled trial. Trials 2021; 22:481. [PMID: 34294134 PMCID: PMC8296658 DOI: 10.1186/s13063-021-05443-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/09/2021] [Indexed: 11/12/2022] Open
Abstract
Background Opposing needling has an obvious curative effect in the treatment of post-stroke hemiplegia; however, the mechanism of the opposing needling in the treatment of post-stroke hemiplegia is still not clear. The purpose of this study is to investigate the effect of opposing needling on the excitability of primary motor cortex (M1) of healthy participants and patients with post-stroke hemiplegia, which may provide insight into the mechanisms of opposing needling in treating post-stroke hemiplegia. Methods This will be a single-blind, randomised, sham-controlled trial in which 80 healthy participants and 40 patients with post-stroke hemiplegia will be recruited. Healthy participants will be randomised 1:1:1:1 to the 2-Hz, 50-Hz, 100-Hz, and sham electroacupuncture groups. Patients with post-stroke hemiplegia will be randomised 1:1 to the opposing needling or conventional treatment groups. The M1 will be located in all groups by using neuroimaging-based navigation. The stimulator coil of transcranial magnetic stimulation (TMS) will be moved over the left and right M1 in order to identify the TMS hotspot, followed by a recording of resting motor thresholds (RMTs) and motor-evoked potentials (MEPs) of the thenar muscles induced by TMS before and after the intervention. The primary outcome measure will be the percent change in the RMTs of the thenar muscles at baseline and after the intervention. The secondary outcome measures will be the amplitude (μV) and latency (ms) of the MEPs of the thenar muscles at baseline and after the intervention. Discussion The aim of this trial is to explore the effect of opposing needling on the excitability of M1 of healthy participants and patients with post-stroke hemiplegia. Trial registration Chinese Clinical Trial Registry ChiCTR1900028138. Registered on 13 December 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05443-x.
Collapse
Affiliation(s)
- Mindong Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yinyu Zi
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jianlu Wu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Jiahui Liu
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Yanling Yu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Haofeng Mo
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China
| | - Weifeng Wen
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Wenjuan Fan
- College of Health Medicine, Chongqing Youth Vocational and Technical College, Chongqing, 400712, China
| | - Yu Zhang
- Massage Therapy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Churong Liu
- Rehabilitation Department, Guangdong 999 Brain Hospital, Guangzhou, 510000, China.
| | - Wei Yi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
7
|
The poly-ADP ribose polymerase-1/apoptosis-inducing factor pathway may help mediate the protective effect of electroacupuncture on early brain injury after subarachnoid hemorrhage. Neuroreport 2020; 31:605-612. [PMID: 32301816 DOI: 10.1097/wnr.0000000000001445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a clinically common, acute, critical cerebrovascular disease associated with high mortality. Here, we investigated the effects of electroacupuncture on early brain injury after SAH. We successfully established a Sprague-Dawley rat model of the SAH model, and randomly divided the rats into four groups: sham-operated group, SAH group, positive control group, and electroacupuncture group. Electroacupuncture effectively decreased the number of transferase UTP nick end labeling-positive cells and extent of DNA fragmentation compared with the control, indicating a decrease in apoptosis. Moreover, electroacupuncture decreased the expression of proteins involved in the poly-ADP ribose polymerase-1/apoptosis-inducing factor (PARP-1/AIF) pathway in vivo, and the difference was statistically significant (P < 0.05). Treatment with electroacupuncture resulted in a significant improvement in neurological function. It inhibited the increase in blood-brain barrier permeability by regulating the protein expression of matrix metalloproteinase-9, occludin, and claudin-5. Additionally, electroacupuncture limited the development of cerebral edema and microglial activation in early brain injury after SAH. In conclusion, electroacupuncture can ameliorate early brain injury after SAH, and this may occur via inhibition of the PARP-1/AIF pathway.
Collapse
|
8
|
Wang MY, Meng M, Yang CC, Zhang L, Li YL, Zhang L, Li L. Cornel iridoid glycoside improves cognitive impairment induced by chronic cerebral hypoperfusion via activating PI3K/Akt/GSK-3β/CREB pathway in rats. Behav Brain Res 2019; 379:112319. [PMID: 31669346 DOI: 10.1016/j.bbr.2019.112319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 12/28/2022]
Abstract
Chronic cerebral hypoperfusion is an important risk factor for vascular dementia (VaD) and other brain dysfunctions, for which there are currently no effective medications available. In the present study, we investigated the potential therapeutic effects of cornel iridoid glycoside (CIG) on VaD in rats modeled by permanent bilateral common carotid artery ligation (2-vessel occlusion, 2VO). The object recognition test (ORT) and Morris water maze (MWM) test were conducted to evaluate the learning and memory function. Western blot analysis and immunohistochemical staining were used to detect the expression of related proteins. Results showed that intragastric administration of CIG (30, 60, and 120 mg/kg) for 3 months significantly increased the discrimination index in ORT and decreased the escape latency in MWM test, ameliorating the learning and memory deficit in 2VO rats. Further data indicated that CIG increased the expression of neurotrophic factors (NGF and BDNF) and their receptors (TrkA and TrkB), glutamate receptor subunits (NMDAR1 and GluR2) in the cerebral cortex and hippocampus of 2VO rats. In addition, CIG elevated the expression of PI3K subunits p110α and p85, further upregulated the phosphorylation of Akt, GSK3β-ser9 and CREB in the cerebral cortex and hippocampus at 3 months after 2VO surgery. Collectively, CIG treatment improved learning and memory deficit induced by chronic cerebral hypoperfusion via increasing neurotrophic factors thus protecting glutamate receptors and activating PI3K/Akt/GSK3β/CREB signaling pathway in rats. These results suggest that CIG may be beneficial to VaD therapy.
Collapse
Affiliation(s)
- Ming-Yang Wang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China
| | - Min Meng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China
| | - Ya-Li Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China.
| |
Collapse
|