1
|
Fu W, Xu R, Bian P, Li X, Yang K, Wang X. Exploring the shared genetic basis of major depressive disorder and frailty. J Affect Disord 2024; 366:386-394. [PMID: 39214376 DOI: 10.1016/j.jad.2024.08.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and frailty impose substantial health and economic burdens. MDD is recognized as a significant risk factor for frailty, but the genetic associations between these conditions remain unclear. This study investigates the genetic correlation, shared pleiotropic loci, causal relationships, and comorbid genes between MDD and frailty. METHODS The genetic correlation between MDD and frailty was assessed using linkage disequilibrium score regression (LDSC) based on data from genome-wide association studies (GWAS). A detailed analysis was performed to identify shared pleiotropic loci and causal relationships through cross-phenotype association tests and Mendelian randomization. Additionally, tissue enrichment analysis was conducted using stratified LDSC, gene-based associations with both conditions were assessed using Multimarker Analysis of Genomic Annotation (MAGMA), and pathway analysis of comorbid genes was performed using the g: GOSt tool. RESULTS Our findings revealed a significant positive genetic correlation between MDD and frailty (rg = 0.65, P = 1.49E-219). We identified 57 shared risk SNPs between the two conditions, including 6 novel SNPs. Mendelian randomization analyses indicated robust causal effects of MDD on frailty and vice versa. Furthermore, we observed tissue-specific heritability enrichment in 9 brain tissues. By combining MAGMA and CPASSOC analyses, we identified 10 comorbid genes associated with both MDD and frailty, primarily involved in synapse formation, modulation, plasticity, and desaturase activity. CONCLUSION This study provides strong evidence for a shared genetic basis between MDD and frailty. The identification of comorbid genes offers new insights into the mechanisms underlying the relationship between these conditions.
Collapse
Affiliation(s)
- Wei Fu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Peiyu Bian
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xu Li
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Zhao R, Sun JB, Deng H, Cheng C, Li X, Wang FM, He ZY, Chang MY, Lu LM, Tang CZ, Xu NG, Yang XJ, Qin W. Per1 gene polymorphisms influence the relationship between brain white matter microstructure and depression risk. Front Psychiatry 2022; 13:1022442. [PMID: 36440417 PMCID: PMC9691780 DOI: 10.3389/fpsyt.2022.1022442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Circadian rhythm was involved in the pathogenesis of depression. The detection of circadian genes and white matter (WM) integrity achieved increasing focus for early prediction and diagnosis of major depressive disorder (MDD). This study aimed to explore the effects of PER1 gene polymorphisms (rs7221412), one of the key circadian genes, on the association between depressive level and WM microstructural integrity. MATERIALS AND METHODS Diffusion tensor imaging scanning and depression assessment (Beck Depression Inventory, BDI) were performed in 77 healthy college students. Participants also underwent PER1 polymorphism detection and were divided into the AG group and AA group. The effects of PER1 genotypes on the association between the WM characteristics and BDI were analyzed using tract-based spatial statistics method. RESULTS Compared with homozygous form of PER1 gene (AA), more individuals with risk allele G of PER1 gene (AG) were in depression state with BDI cutoff of 14 (χ2 = 7.37, uncorrected p = 0.007). At the level of brain imaging, the WM integrity in corpus callosum, internal capsule, corona radiata and fornix was poorer in AG group compared with AA group. Furthermore, significant interaction effects of genotype × BDI on WM characteristics were observed in several emotion-related WM tracts. To be specific, the significant relationships between BDI and WM characteristics in corpus callosum, internal capsule, corona radiata, fornix, external capsule and sagittal stratum were only found in AG group, but not in AA group. CONCLUSION Our findings suggested that the PER1 genotypes and emotion-related WM microstructure may provide more effective measures of depression risk at an early phase.
Collapse
Affiliation(s)
- Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Jin-Bo Sun
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Hui Deng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Chen Cheng
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China
| | - Xue Li
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Fu-Min Wang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Zhao-Yang He
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Meng-Ying Chang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Li-Ming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng-Gui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue-Juan Yang
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wei Qin
- Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi, China.,Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi, China.,Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Zhu X, Ward J, Cullen B, Lyall DM, Strawbridge RJ, Lyall LM, Smith DJ. Phenotypic and genetic associations between anhedonia and brain structure in UK Biobank. Transl Psychiatry 2021; 11:395. [PMID: 34282121 PMCID: PMC8289859 DOI: 10.1038/s41398-021-01522-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Anhedonia is a core symptom of multiple psychiatric disorders and has been associated with alterations in brain structure. Genome-wide association studies suggest that anhedonia is heritable, with a polygenic architecture, but few studies have explored the association between genetic loading for anhedonia-indexed by polygenic risk scores for anhedonia (PRS-anhedonia)-and structural brain imaging phenotypes. Here, we investigated how anhedonia and PRS-anhedonia were associated with brain structure within the UK Biobank cohort. Brain measures (including total grey/white matter volumes, subcortical volumes, cortical thickness (CT) and white matter integrity) were analysed using linear mixed models in relation to anhedonia and PRS-anhedonia in 19,592 participants (9225 males; mean age = 62.6 years, SD = 7.44). We found that state anhedonia was significantly associated with reduced total grey matter volume (GMV); increased total white matter volume (WMV); smaller volumes in thalamus and nucleus accumbens; reduced CT within the paracentral cortex, the opercular part of inferior frontal gyrus, precentral cortex, insula and rostral anterior cingulate cortex; and poorer integrity of many white matter tracts. PRS-anhedonia was associated with reduced total GMV; increased total WMV; reduced white matter integrity; and reduced CT within the parahippocampal cortex, superior temporal gyrus and insula. Overall, both state anhedonia and PRS-anhedonia were associated with individual differences in multiple brain structures, including within reward-related circuits. These associations may represent vulnerability markers for psychopathology relevant to a range of psychiatric disorders.
Collapse
Affiliation(s)
- Xingxing Zhu
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK.
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Breda Cullen
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Donald M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Health Data Research (HDR), Glasgow, UK
| | - Laura M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, Edinburgh, UK
| |
Collapse
|
4
|
Probiotics alleviate depressive behavior in chronic unpredictable mild stress rat models by remodeling intestinal flora. Neuroreport 2021; 32:686-693. [PMID: 33913925 DOI: 10.1097/wnr.0000000000001637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the effects of probiotics on depressive behavior in a chronic unpredictable mild stress (CUMS) rat model by remodeling intestinal flora. METHODS Twenty-four male SD rats aged 6-8 weeks were randomly divided into four groups: control group, depression group (CUMS), depression+paroxetine group (Paro) and depression+probiotics group (Pro). Sucrose preference, open field and forced swimming tests were used to assess depression-like behavior in rats. ELISA was used to detect the levels of adrenocorticotropic hormone (ACTH), and corticosterone, norepinephrine and 5-hydroxytryptamine in rat serum. Real-time PCR was used to determine the changes of Lactobacillus, Bifidobacterium, Enterococcus faecalis and Escherichia coli in rat cecum. RESULTS Compared with the control group, CUMS led to significant decreases of body weight, total traveled distance, duration in central area, immobility time, norepinephrine and 5-hydroxytryptamine contents in hippocampal tissues, as well as Lactobacillus and Bifidobacterium in the cecum. It also resulted in marked increases of the contents of E. faecalis and E. coli in the cecum, ACTH and corticosterone contents in the serum of rats. Paroxetine and probiotic treatment each diminished or prevented these changes. CONCLUSION By remodeling intestinal flora, probiotics can reduce the CUMS-induced depressive behavior of rats, increase the levels of norepinephrine and 5-hydroxytryptamine, and inhibit the expression of ACTH and corticosterone. Significantly, the effect of both paroxetine and probiotic on microorganisms is similar.
Collapse
|
5
|
Unal-Aydin P, Aydin O, Arslan A. Genetic Architecture of Depression: Where Do We Stand Now? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:203-230. [PMID: 33834402 DOI: 10.1007/978-981-33-6044-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The research of depression genetics has been occupied by historical candidate genes which were tested by candidate gene association studies. However, these studies were mostly not replicable. Thus, genetics of depression have remained elusive for a long time. As research moves from candidate gene association studies to GWAS, the hypothesis-free non-candidate gene association studies in genome-wide level, this trend will likely change. Despite the fact that the earlier GWAS of depression were not successful, the recent GWAS suggest robust findings for depression genetics. These altogether will catalyze a new wave of multidisciplinary research to pin down the neurobiology of depression.
Collapse
Affiliation(s)
- Pinar Unal-Aydin
- Psychology Program, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Orkun Aydin
- Psychology Program, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ayla Arslan
- School of Advanced Studies, University of Tyumen, Tyumen, Russia.
| |
Collapse
|
6
|
Katsuki A, Kakeda S, Watanabe K, Igata R, Otsuka Y, Kishi T, Nguyen L, Ueda I, Iwata N, Korogi Y, Yoshimura R. A single-nucleotide polymorphism influences brain morphology in drug-naïve patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15:2425-2432. [PMID: 31692503 PMCID: PMC6711561 DOI: 10.2147/ndt.s204461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recently, a genome-wide association study successfully identified genetic variants associated with major depressive disorder (MDD). The study identified 17 independent single-nucleotide polymorphisms (SNPs) significantly associated with diagnosis of MDD. These SNPs were predicted to be enriched in genes that are expressed in the central nervous system and function in transcriptional regulation associated with neurodevelopment. The study aimed to investigate associations between 17 SNPs and brain morphometry using magnetic resonance imaging (MRI) in drug-naïve patients with MDD and healthy controls (HCs). METHODS Forty-seven patients with MDD and 42 HCs were included. All participants underwent T1-weighted structural MRI and genotyping. The genotype-diagnosis interactions associated with regional cortical thicknesses were evaluated using voxel-based morphometry for the 17 SNPs. RESULTS Regarding rs301806, an SNP in the RERE genomic regions, we found a significant difference in a genotype effect in the right-lateral orbitofrontal and postcentral lobes between diagnosis groups. After testing every possible diagnostic comparison, the genotype-diagnosis interaction in these areas revealed that the cortical thickness reductions in the MDD group relative to those in the HC group were significantly larger in T/T individuals than in C-carrier ones. For the other SNPs, no brain area was noted where a genotype effect significantly differed between the two groups. CONCLUSIONS We found that a RERE gene SNP was associated with cortical thickness reductions in the right-lateral orbitofrontal and postcentral lobes in drug-naïve patients with MDD. The effects of RERE gene polymorphism and gene-environment interactions may exist in brain structures of patients with MDD.
Collapse
Affiliation(s)
- Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - LeHoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| |
Collapse
|