1
|
Bramble MS, Fourcassié V, Vashist N, Roux-Dalvai F, Zhou Y, Bumoko G, Kasendue ML, Spencer D, Musasa Hanshi-Hatuhu H, Kambale-Mastaki V, Manalo RVM, Mohammed A, McIlwain DR, Cunningham G, Summar M, Boivin MJ, Caldovic L, Vilain E, Mumba-Ngoyi D, Tshala-Katumbay D, Droit A. Glutathione peroxidase 3 is a potential biomarker for konzo. Nat Commun 2024; 15:7811. [PMID: 39242582 PMCID: PMC11379914 DOI: 10.1038/s41467-024-52136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Konzo is a neglected paralytic neurological disease associated with food (cassava) poisoning that affects the world's poorest children and women of childbearing ages across regions of sub-Saharan Africa. Despite understanding the dietary factors that lead to konzo, the molecular markers and mechanisms that trigger this disease remain unknown. To identify potential protein biomarkers associated with a disease status, plasma was collected from two independent Congolese cohorts, a discovery cohort (n = 60) and validation cohort (n = 204), sampled 10 years apart and subjected to multiple high-throughput assays. We identified that Glutathione Peroxidase 3 (GPx3), a critical plasma-based antioxidant enzyme, was the sole protein examined that was both significantly and differentially abundant between affected and non-affected participants in both cohorts, with large reductions observed in those affected with konzo. Our findings raise the notion that reductions in key antioxidant mechanisms may be the biological risk factor for the development of konzo, particularly those mediated through pathways involving the glutathione peroxidase family.
Collapse
Affiliation(s)
- Matthew S Bramble
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA.
| | - Victor Fourcassié
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Neerja Vashist
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Florence Roux-Dalvai
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Yun Zhou
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Guy Bumoko
- Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo
| | - Michel Lupamba Kasendue
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - D'Andre Spencer
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Hilaire Musasa Hanshi-Hatuhu
- Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Vincent Kambale-Mastaki
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Rafael Vincent M Manalo
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Ermita, Manila, Philippines
| | - Aliyah Mohammed
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - David R McIlwain
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Gary Cunningham
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Marshall Summar
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Michael J Boivin
- Departments of Psychiatry and Neurology & Ophthalmology, Michigan State University, East Lansing, MI, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Dieudonne Mumba-Ngoyi
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Desire Tshala-Katumbay
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo.
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Arnaud Droit
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada.
| |
Collapse
|
2
|
Ferreira RR, Carvalho RV, Coelho LL, Gonzaga BMDS, Bonecini-Almeida MDG, Garzoni LR, Araujo-Jorge TC. Current Understanding of Human Polymorphism in Selenoprotein Genes: A Review of Its Significance as a Risk Biomarker. Int J Mol Sci 2024; 25:1402. [PMID: 38338681 PMCID: PMC10855570 DOI: 10.3390/ijms25031402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 02/12/2024] Open
Abstract
Selenium has been proven to influence several biological functions, showing to be an essential micronutrient. The functional studies demonstrated the benefits of a balanced selenium diet and how its deficiency is associated with diverse diseases, especially cancer and viral diseases. Selenium is an antioxidant, protecting the cells from damage, enhancing the immune system response, preventing cardiovascular diseases, and decreasing inflammation. Selenium can be found in its inorganic and organic forms, and its main form in the cells is the selenocysteine incorporated into selenoproteins. Twenty-five selenoproteins are currently known in the human genome: glutathione peroxidases, iodothyronine deiodinases, thioredoxin reductases, selenophosphate synthetase, and other selenoproteins. These proteins lead to the transport of selenium in the tissues, protect against oxidative damage, contribute to the stress of the endoplasmic reticulum, and control inflammation. Due to these functions, there has been growing interest in the influence of polymorphisms in selenoproteins in the last two decades. Selenoproteins' gene polymorphisms may influence protein structure and selenium concentration in plasma and its absorption and even impact the development and progression of certain diseases. This review aims to elucidate the role of selenoproteins and understand how their gene polymorphisms can influence the balance of physiological conditions. In this polymorphism review, we focused on the PubMed database, with only articles published in English between 2003 and 2023. The keywords used were "selenoprotein" and "polymorphism". Articles that did not approach the theme subject were excluded. Selenium and selenoproteins still have a long way to go in molecular studies, and several works demonstrated the importance of their polymorphisms as a risk biomarker for some diseases, especially cardiovascular and thyroid diseases, diabetes, and cancer.
Collapse
Affiliation(s)
- Roberto Rodrigues Ferreira
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Regina Vieira Carvalho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Laura Lacerda Coelho
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Beatriz Matheus de Souza Gonzaga
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetics, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil;
| | - Luciana Ribeiro Garzoni
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| | - Tania C. Araujo-Jorge
- Laboratory of Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Institute (LITEB-IOC/Fiocruz), Oswaldo Cruz Foundation (Fiocruz), Avenida Brasil 4365, Manguinhos, Pav. Cardoso Fontes, Sala 64, Rio de Janeiro 21040-360, Brazil; (R.V.C.); (L.L.C.); (B.M.d.S.G.); (L.R.G.)
| |
Collapse
|
3
|
Frequencies of glutathione S-transferase A1 rs3957357 polymorphism in a Turkish population. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.871071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
4
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
5
|
Shao X, Yan C, Sun D, Fu C, Tian C, Duan L, Zhu G. Association Between Glutathione Peroxidase-1 (GPx-1) Polymorphisms and Schizophrenia in the Chinese Han Population. Neuropsychiatr Dis Treat 2020; 16:2297-2305. [PMID: 33116528 PMCID: PMC7547781 DOI: 10.2147/ndt.s272278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The dopamine and oxidative stress hypotheses are leading theories of the pathoetiology of schizophrenia (SCZ). Glutathione Peroxidase 1 (GPx-1), a major antioxidant enzyme, and the most abundantly expressed member of the GPx family, plays an important role in metabolic dopamine changes, which are closely related to neurological and psychiatric disorders. The impact of GPx-1 polymorphisms has rarely been explored in the field of SCZ. Here, we explored the possible relationship between GPx-1 gene polymorphisms and SCZ in Chinese Han subjects by using the polymerase chain reaction-restriction fragment length polymorphism method. METHODS DNA from 786 patients (360 patients with schizophrenia and 426 healthy controls) was genotyped for the single-nucleotide polymorphisms rs1800668 C/T and rs1050450 C/T in GPx-1 using polymerase chain reaction-restriction fragment length polymorphism analysis. Analysis of the association between GPx-1 and SCZ was performed using SPSS 22.0, while Haploview 4.2 software and SHEsis software were used to perform linkage disequilibrium analysis and haplotype analysis. RESULTS The results indicated that the GPx-1 polymorphisms rs1050450 and rs1800668 were associated with SCZ. We found that the C-allele of rs1800668 C/T may be a protection factor against SCZ in general, but in particular, for males. Furthermore, the CT and TC (GPx-1 rs1800668 C/T and rs1050450 C/T) haplotypes may be susceptible to SCZ in the population. Finally, no significant differences in allelic or genotypic frequencies of rs1050450 were detected between cases and controls from whole or stratification analyses by gender. CONCLUSION GPx-1 polymorphisms are related to SCZ in Chinese Han subjects. Our results suggested that GPx-1 may be a potential gene that influences SCZ.
Collapse
Affiliation(s)
- Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ci Yan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Dongxue Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunsheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|