1
|
Petersen J, McGough J, Gopinath G, Scantlebury N, Tripathi R, Brandmeir C, Boshmaf SZ, Brandmeir NJ, Sewell IJ, Konrad PE, Abrahao A, Murray A, Lam B, Ranjan M, Hamani C, Frey J, Rohringer C, McSweeney M, Mahoney JJ, Schwartz ML, Rezai A, Lipsman N, Scarisbrick DM, Rabin JS. Cognitive outcomes following unilateral magnetic resonance-guided focused ultrasound thalamotomy for essential tremor: findings from two cohorts. Brain Commun 2024; 6:fcae293. [PMID: 39291168 PMCID: PMC11406546 DOI: 10.1093/braincomms/fcae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Magnetic resonance-guided, focused ultrasound thalamotomy is a neurosurgical treatment for refractory essential tremor. This study examined cognitive outcomes following unilateral magnetic resonance-guided, focused ultrasound thalamotomy, targeting the ventral intermediate nucleus of the thalamus for essential tremor. The research was conducted at two sites: Sunnybrook Research Institute in Toronto, Canada, and West Virginia University School of Medicine Rockefeller Neuroscience Institute in West Virginia, USA. The study focused on cognitive changes at both the group and individual levels. Patients with refractory essential tremor completed cognitive testing before and after magnetic resonance-guided, focused ultrasound thalamotomy at both sites. The cognitive testing assessed domains of attention, processing speed, working memory, executive function, language and learning/memory. Postoperative changes in cognition were examined using paired t-tests and Wilcoxon signed-rank tests, as appropriate. Reliable change indices were calculated to assess clinically significant changes at the individual level. A total of 33 patients from Toronto and 22 patients from West Virginia were included. Following magnetic resonance-guided, focused ultrasound thalamotomy, there was a significant reduction in tremor severity in both cohorts. At the group level, there were no significant declines in postoperative cognitive performance in either cohort. The reliable change analyses revealed some variability at the individual level, with most patients maintaining stable performance or showing improvement. Taken together, the results from these two independent cohorts demonstrate that unilateral magnetic resonance-guided, focused ultrasound thalamotomy significantly reduces tremor severity without negatively impacting cognition at both the group and individual levels, highlighting the cognitive safety of magnetic resonance-guided focused ultrasound thalamotomy for essential tremor.
Collapse
Affiliation(s)
- Julie Petersen
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Josh McGough
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Georgia Gopinath
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
| | - Nadia Scantlebury
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
| | - Richa Tripathi
- Jean and Paul Amos PD and Movement Disorders Program, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Cheryl Brandmeir
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Silina Z Boshmaf
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
| | - Nicholas J Brandmeir
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Isabella J Sewell
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
| | - Peter E Konrad
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Agessandro Abrahao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5
| | - Ann Murray
- Department of Neurology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Benjamin Lam
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5
| | - Manish Ranjan
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Clement Hamani
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5
| | - Jessica Frey
- Department of Neurology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Camryn Rohringer
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
| | - Melissa McSweeney
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
| | - James J Mahoney
- Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV 26505, USA
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Michael L Schwartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5
| | - Ali Rezai
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Nir Lipsman
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5
| | - David M Scarisbrick
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada M4N 3M5
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada M5G 1V7
| |
Collapse
|
2
|
Woods JE, Singer AL, Alrashdan F, Tan W, Tan C, Sheth SA, Sheth SA, Robinson JT. Miniature battery-free epidural cortical stimulators. SCIENCE ADVANCES 2024; 10:eadn0858. [PMID: 38608028 PMCID: PMC11014439 DOI: 10.1126/sciadv.adn0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Miniaturized neuromodulation systems could improve the safety and reduce the invasiveness of bioelectronic neuromodulation. However, as implantable bioelectronic devices are made smaller, it becomes difficult to store enough power for long-term operation in batteries. Here, we present a battery-free epidural cortical stimulator that is only 9 millimeters in width yet can safely receive enough wireless power using magnetoelectric antennas to deliver 14.5-volt stimulation bursts, which enables it to stimulate cortical activity on-demand through the dura. The device has digitally programmable stimulation output and centimeter-scale alignment tolerances when powered by an external transmitter. We demonstrate that this device has enough power and reliability for real-world operation by showing acute motor cortex activation in human patients and reliable chronic motor cortex activation for 30 days in a porcine model. This platform opens the possibility of simple surgical procedures for precise neuromodulation.
Collapse
Affiliation(s)
- Joshua E. Woods
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Amanda L. Singer
- Motif Neurotech, 2450 Holcombe Blvd, Houston, TX 77021, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Fatima Alrashdan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Wendy Tan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Chunfeng Tan
- Department of Neurology, UTHealth McGovern Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | - Sunil A. Sheth
- Department of Neurology, UTHealth McGovern Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Motif Neurotech, 2450 Holcombe Blvd, Houston, TX 77021, USA
- Applied Physics Program, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX 77005, USA
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
3
|
Marianayagam NJ, Paddick I, Persad AR, Hori YS, Maslowski A, Thirunarayanan I, Khanna AR, Park DJ, Buch V, Chang SD, Schneider MB, Yu H, Weidlich GA, Adler JR. Dosimetric Comparison of Dedicated Radiosurgery Platforms for the Treatment of Essential Tremor: Technical Report. Cureus 2024; 16:e57452. [PMID: 38699125 PMCID: PMC11064878 DOI: 10.7759/cureus.57452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Essential tremor (ET) is one of the most common adult movement disorders. As the worldwide population ages, the incidence and prevalence of ET is increasing. Although most cases can be managed conservatively, there is a subset of ET that is refractory to medical management. By virtue of being "reversible", deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) of the thalamus is one commonly accepted intervention. As an alternative to invasive and expensive DBS, there has been a renaissance in treating ET with lesion-based approaches, spearheaded most recently by high-intensity focused ultrasound (HIFU), the hallmark of which is that it is non-invasive. Meanwhile, stereotactic radiosurgical (SRS) lesioning of VIM represents another time-honored lesion-based non-invasive treatment of ET, which is especially well suited for those patients that cannot tolerate open neurosurgery and is now also getting a "second look". While multiple SRS platforms have been and continue to be used to treat ET, there is little in the way of dosimetric comparison between different technologies. In this brief technical report we compare the dosimetric profiles of three major radiosurgical platforms (Gamma Knife, CyberKnife Robotic Radiosurgery, and Zap-X Gyroscopic Radiosurgery (GRS)) for the treatment of ET. In general, the GRS and Gamma Knife were shown to have the best theoretical dosimetric profiles for VIM lesioning. Nevertheless the relevance of such superiority to clinical outcomes requires future patient studies.
Collapse
Affiliation(s)
| | - Ian Paddick
- National Centre for Neurology and Neurosurgery, Queen Square Radiosurgery Centre, London, GBR
| | - Amit R Persad
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Yusuke S Hori
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | | | - Arjun R Khanna
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - David J Park
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Vivek Buch
- Neurological Surgery, Stanford University Medical Center, Palo Alto, USA
| | - Steven D Chang
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - M Bret Schneider
- Stereotactic Radiosurgery, Zap Surgical Systems, Inc., San Carlos, USA
- Psychiatry, Stanford University School of Medicine, Stanford, USA
| | - Hong Yu
- Neurological Surgery, Vanderbilt University, Nashville, USA
| | | | - John R Adler
- Radiation Oncology, Stanford University Medical Center, Palo Alto, USA
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
4
|
Whitestone J, Salih A, Goswami T. Investigation of a Deep Brain Stimulator (DBS) System. Bioengineering (Basel) 2023; 10:1160. [PMID: 37892890 PMCID: PMC10604713 DOI: 10.3390/bioengineering10101160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
A deep brain stimulator (DBS) device is a surgically implanted system that delivers electrical impulses to specific targets in the brain to treat abnormal movement disorders. A DBS is like a cardiac pacemaker, but instead of sending electrical signals to the heart, it sends them to the brain instead. When DBS leads and extension wires are exposed in the biological environment, this can adversely affect impedance and battery life, resulting in poor clinical outcomes. A posthumously extracted DBS device was evaluated using visual inspection and optical microscopy as well as electrical and mechanical tests to quantify the damage leading to its impairment. The implantable pulse generator (IPG) leads, a component of the DBS, contained cracks, delamination, exfoliations, and breakage. Some aspects of in vivo damage were observed in localized areas discussed in this paper. The duration of the time in months that the DBS was in vivo was estimated based on multiple regression analyses of mechanical property testing from prior research of pacemaker extensions. The test results of three DBS extensions, when applied to the regressions, were used to estimate the in vivo duration in months. This estimation approach may provide insight into how long the leads can function effectively before experiencing mechanical failure. Measurements of the extension coils demonstrated distortion and stretching, demonstrating the changes that may occur in vivo. These changes can alter the impedance and potentially reduce the effectiveness of the clinical treatment provided by the DBS system. Ultimately, as both DBSs and pacemakers use the same insulation and lead materials, the focus of this paper is to develop a proof of concept demonstrating that the mechanical properties measured from pacemaker extensions and leads extracted posthumously of known duration, measured in months while in vivo, can be used to predict the duration of DBS leads of unknown lifespan. The goal is to explore the validity of the proposed model using multiple regression of mechanical properties.
Collapse
Affiliation(s)
- Jennifer Whitestone
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
| | - Anmar Salih
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
| | - Tarun Goswami
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH 45435, USA (A.S.)
- Department of Orthopedic Surgery, Sports Medicine and Rehabilitation, Miami Valley Hospital, Dayton, OH 45409, USA
| |
Collapse
|
5
|
Begg A, Louey MGY, Pearce P, Bulluss K, Thevathasan W, McDermott HJ, Perera T. Evaluation of the PaCER Algorithm for Postoperative Subthalamic Nucleus Deep Brain Stimulation Electrode Localization . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083396 DOI: 10.1109/embc40787.2023.10340555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Deep Brain Stimulation (DBS) is an established therapy for many movement disorders. DBS entails electrical stimulation of precise brain structures using permanently implanted electrodes. Following implantation, locating the electrodes relative to the target brain structure assists patient outcome optimization. Here we evaluated an open-source automatic algorithm (PaCER) to localize individual electrodes on Computed Tomography imaging (co-registered to Magnetic Resonance Imaging). In a dataset of 111 participants, we found a modified version of the algorithm matched manual-markups with median error less than 0.191 mm (interquartile range 0.698 mm). Given the error is less than the voxel resolution (1 mm3) of the images, we conclude that the automatic algorithm is suitable for DBS electrode localizations.Clinical Relevance- Automated DBS electrode localization identifies the closest electrode to the target brain structure; allowing the neurologist to direct electrical stimulation to maximize patient outcomes. Further, if none of the electrodes are deemed suitable, localization will guide re-implantation.
Collapse
|
6
|
Terzic L, Voegtle A, Farahat A, Hartong N, Galazky I, Nasuto SJ, Andrade ADO, Knight RT, Ivry RB, Voges J, Buentjen L, Sweeney‐Reed CM. Deep brain stimulation of the ventrointermediate nucleus of the thalamus to treat essential tremor improves motor sequence learning. Hum Brain Mapp 2022; 43:4791-4799. [PMID: 35792001 PMCID: PMC9491285 DOI: 10.1002/hbm.25989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/06/2022] Open
Abstract
The network of brain structures engaged in motor sequence learning comprises the same structures as those involved in tremor, including basal ganglia, cerebellum, thalamus, and motor cortex. Deep brain stimulation (DBS) of the ventrointermediate nucleus of the thalamus (VIM) reduces tremor, but the effects on motor sequence learning are unknown. We investigated whether VIM stimulation has an impact on motor sequence learning and hypothesized that stimulation effects depend on the laterality of electrode location. Twenty patients (age: 38-81 years; 12 female) with VIM electrodes implanted to treat essential tremor (ET) successfully performed a serial reaction time task, varying whether the stimuli followed a repeating pattern or were selected at random, during which VIM-DBS was either on or off. Analyses of variance were applied to evaluate motor sequence learning performance according to reaction times (RTs) and accuracy. An interaction was observed between whether the sequence was repeated or random and whether VIM-DBS was on or off (F[1,18] = 7.89, p = .012). Motor sequence learning, reflected by reduced RTs for repeated sequences, was greater with DBS on than off (T[19] = 2.34, p = .031). Stimulation location correlated with the degree of motor learning, with greater motor learning when stimulation targeted the lateral VIM (n = 23, ρ = 0.46; p = .027). These results demonstrate the beneficial effects of VIM-DBS on motor sequence learning in ET patients, particularly with lateral VIM electrode location, and provide evidence for a role for the VIM in motor sequence learning.
Collapse
Affiliation(s)
- Laila Terzic
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Angela Voegtle
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Amr Farahat
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck SocietyFrankfurtGermany
| | - Nanna Hartong
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Imke Galazky
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
| | - Slawomir J. Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological SciencesUniversity of ReadingReadingUK
| | - Adriano de Oliveira Andrade
- Faculty of Electrical Engineering, Center for Innovation and Technology Assessment in Health, Postgraduate Program in Electrical and Biomedical EngineeringFederal University of UberlândiaUberlândiaBrazil
| | - Robert T. Knight
- Helen Wills Neuroscience InstituteUniversity of California—BerkeleyBerkeleyCaliforniaUSA
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Richard B. Ivry
- Department of PsychologyUniversity of California—BerkeleyBerkeleyCaliforniaUSA
| | - Jürgen Voges
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Lars Buentjen
- Department of Stereotactic NeurosurgeryOtto von Guericke University MagdeburgMagdeburgGermany
| | - Catherine M. Sweeney‐Reed
- Neurocybernetics and Rehabilitation, Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain SciencesOtto von Guericke University MagdeburgMagdeburgGermany
| |
Collapse
|
7
|
Sajonz BE, Frommer ML, Walz ID, Reisert M, Maurer C, Rijntjes M, Piroth T, Schröter N, Jenkner C, Reinacher PC, Brumberg J, Meyer PT, Blazhenets G, Coenen VA. Unravelling delayed therapy escape after thalamic deep brain stimulation for essential tremor? - Additional clinical and neuroimaging evidence. Neuroimage Clin 2022; 36:103150. [PMID: 35988341 PMCID: PMC9402391 DOI: 10.1016/j.nicl.2022.103150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Delayed therapy escape after thalamic deep brain stimulation (DBS) for essential tremor is a serious yet frequent condition. It is often difficult to detect this process at onset due to its gradual evolution. OBJECTIVE Here we aim to identify clinical and neuroimaging hallmarks of delayed therapy escape. METHODS We retrospectively studied operationalized and quantitative analyses of tremor and gait, as well as [18F]fluorodeoxyglucose (FDG) PET of 12 patients affected by therapy escape. All examinations were carried out with activated DBS (ON) and 72 h after deactivation (OFF72h); gait and tremor were also analyzed directly after deactivation (OFF0h). Changes of normalized glucose metabolism between stimulation conditions were assessed using within-subject analysis of variance and statistical parametric mapping. Additionally, a comparison to the [18F]FDG PET of an age-matched control group was performed. Exploratory correlation analyses were conducted with operationalized and parametric clinical data. RESULTS Of the immediately accessible parametric tremor data (i.e. ON or OFF0h) only the rebound (i.e. OFF0h) frequency of postural tremor showed possible correlations with signs of ataxia at ON. Regional glucose metabolism was significantly increased bilaterally in the thalamus and dentate nucleus in ON compared to OFF72h. No differences in regional glucose metabolism were found in patients in ON and OFF72h compared with the healthy controls. CONCLUSIONS Rebound frequency of postural tremor seems to be a good diagnostic marker for delayed therapy escape. Regional glucose metabolism suggests that this phenomenon may be associated with increased metabolic activity in the thalamus and dentate nucleus possibly due to antidromic stimulation effects. We see reasons to interpret the delayed therapy escape phenomenon as being related to long term and chronic DBS.
Collapse
Affiliation(s)
- Bastian E.A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Corresponding author at: Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Breisacher Strasse 64 – 79106 Freiburg, i.Br., Germany.
| | - Marvin L. Frommer
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Isabelle D. Walz
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Maurer
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Michel Rijntjes
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias Piroth
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Department of Neurology, Kantonsspital Aarau, Aarau, Switzerland
| | - Nils Schröter
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Joachim Brumberg
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Center for Deep Brain Stimulation, University of Freiburg, Germany,Center for Basics in Neuromodulation (Neuromod Basics), Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Österlund E, Blomstedt P, Fytagoridis A. Ipsilateral Effects of Unilateral Deep Brain Stimulation for Essential Tremor. Stereotact Funct Neurosurg 2022; 100:248-252. [PMID: 35760039 DOI: 10.1159/000525325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Essential tremor (ET) is the most common adult movement disorder. For the relatively large group of patients who do not respond adequately to pharmacological therapy, deep brain stimulation (DBS) is a well-established treatment option. Most ET patients will have bilateral symptoms, and many of them receive bilateral DBS. Unilateral DBS is however still the most common procedure, and some papers suggest an ipsilateral effect in these patients. OBJECTIVES The aim of this study was to analyze if there is an ipsilateral effect of DBS for ET. METHOD We retrospectively analyzed our patient cohort with DBS surgery from 1996 to 2017, selecting patients with ET that underwent surgery with unilateral DBS without previous DBS or lesional surgery. A total number of 68 patients (39 males, 29 females) were identified. The patients were evaluated twice: first, at a mean time of 12 months after surgery defined as short-term follow-up and then again at a mean time of 49 months after surgery defined as long-term follow-up, using the clinical rating scale for tremor (CRST). RESULTS The total CRST score was reduced from mean 49.5 points at baseline before surgery to 20.2 (p < 0.001) at short-term and 28.3 (p < 0.001) at long-term follow-up. Contralateral tremor was reduced from mean 6.1 to 0.4 (p < 0.001) and 1.2 (p < 0.001), respectively. Contralateral hand function was reduced from 11.5 to 2.6 (p < 0.001) and 4.6 (p < 0.001), respectively. Ipsilateral hand function scored 9 at baseline, 8.3 at 1 year, and then again 9.4 at long-term follow-up. Ipsilateral tremor scored 4.0 at baseline, 3.7 at 1 year, and 4.3 at long-term follow-up. Neither ipsilateral hand function nor ipsilateral tremor showed significant difference. CONCLUSIONS There was no difference in severity of ipsilateral tremor, neither at 1 year nor in the long term. We believe ipsilateral effects of DBS for ET merits limited consideration regarding decision-making or patient counseling before surgery.
Collapse
Affiliation(s)
- Erik Österlund
- Department of Clinical Neuroscience, Neurosurgery, Karolinska Institutet, Solna, Sweden
| | - Patric Blomstedt
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Anders Fytagoridis
- Department of Clinical Neuroscience, Neurosurgery, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
9
|
Xu X, Zeng Z, Qi Y, Ren K, Zhang C, Sun B, Li D. Remote video-based outcome measures of patients with Parkinson's disease after deep brain stimulation using smartphones: a pilot study. Neurosurg Focus 2021; 51:E2. [PMID: 34724646 DOI: 10.3171/2021.8.focus21383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To provide better postoperative healthcare for patients with Parkinson's disease (PD) who received deep brain stimulation (DBS) surgery and to allow surgeons improved tracking of surgical outcomes, the authors sought to examine the applicability and feasibility of remote assessment using smartphones. METHODS A disease management mobile application specifically for PD was used to perform the remote assessment of patients with PD who underwent DBS. Connection with patients was first established via a phone call or a social application, and instructions for completing the remote assessment were delivered. During the video-based virtual meeting, three nonmotor assessment scales measuring the quality of life and mental state, and a modified version of the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale, part III (MDS-UPDRS III) measuring motor abilities were evaluated. After the assessment, a report and the satisfaction questionnaire were sent to the patient. RESULTS Overall, 22 patients were recruited over a 4-week period. Among those, 18 patients completed the assessment on the mobile application. The mean duration was 41.3 minutes for video assessment and 17.5 minutes for nonmotor assessment via telephone. The mean estimated cost was 427.68 Chinese yuan (CNY) for an in-person visit and 20.91 CNY for a virtual visit (p < 0.001). The mean time estimate for an in-person visit was 5.51 hours and 0.68 hours for a virtual visit (p = 0.002). All patients reported satisfaction (77.78% very satisfied and 22.22% satisfied) with the virtual visit and were specifically impressed by the professionalism and great attitude of the physician assistant. The majority of patients agreed that the evaluation time was reasonable (50% totally agree, 44.44% agree, and 5.56% neither agree nor disagree) and all patients expressed interest in future virtual visits (61.11% very willingly and 38.89% willingly). No adverse events were observed during the virtual visit. CONCLUSIONS Innovation in remote assessment technologies was highly feasible for its transforming power in the clinical management of patients with PD who underwent DBS and research. Video-based remote assessment offered considerable time and resource reduction for both patients and doctors. It also increased safety and was a well-accepted, favored tool. Finally, the results of this study have shown there is potential to combine remote assessment tools with real-life clinical visits and other telemedical technologies to collectively benefit the postoperative healthcare of patients with PD undergoing DBS.
Collapse
Affiliation(s)
- Xinmeng Xu
- 1Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Zhitong Zeng
- 2Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Yijia Qi
- 1Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Kang Ren
- 3GYENNO SCIENCE CO., LTD., Shenzhen; and
| | - Chencheng Zhang
- 2Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai.,4Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Bomin Sun
- 2Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Dianyou Li
- 2Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
10
|
Wakim AA, Sioda NA, Zhou JJ, Lambert M, Evidente VGH, Ponce FA. Direct targeting of the ventral intermediate nucleus of the thalamus in deep brain stimulation for essential tremor: a prospective study with comparison to a historical cohort. J Neurosurg 2021; 136:662-671. [PMID: 34560647 DOI: 10.3171/2021.2.jns203815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation (DBS) to control symptoms related to essential tremor. The VIM is typically targeted using indirect methods, although studies have reported visualization of the VIM on proton density-weighted MRI. This study compares the outcomes between patients who underwent VIM DBS with direct and indirect targeting. METHODS Between August 2013 and December 2019, 230 patients underwent VIM DBS at the senior author's institution. Of these patients, 92 had direct targeting (direct visualization on proton density 3-T MRI). The remaining 138 patients had indirect targeting (relative to the third ventricle and anterior commissure-posterior commissure line). RESULTS Coordinates of electrodes placed with direct targeting were significantly more lateral (p < 0.001) and anterior (p < 0.001) than those placed with indirect targeting. The optimal stimulation amplitude for devices measured in voltage was lower for those who underwent direct targeting than for those who underwent indirect targeting (p < 0.001). Patients undergoing direct targeting had a greater improvement only in their Quality of Life in Essential Tremor Questionnaire hobby score versus those undergoing indirect targeting (p = 0.04). The direct targeting group had substantially more symptomatic hemorrhages than the indirect targeting group (p = 0.04). All patients who experienced a postoperative hemorrhage after DBS recovered without intervention. CONCLUSIONS Patients who underwent direct VIM targeting for DBS treatment of essential tremor had similar clinical outcomes to those who underwent indirect targeting. Direct VIM targeting is safe and effective.
Collapse
Affiliation(s)
- Andre A Wakim
- 1Department of Medical Education, Creighton University School of Medicine, Phoenix
| | - Natasha A Sioda
- 1Department of Medical Education, Creighton University School of Medicine, Phoenix
| | - James J Zhou
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | - Margaret Lambert
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | | | - Francisco A Ponce
- 2Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| |
Collapse
|
11
|
Opri E, Cernera S, Molina R, Eisinger RS, Cagle JN, Almeida L, Denison T, Okun MS, Foote KD, Gunduz A. Chronic embedded cortico-thalamic closed-loop deep brain stimulation for the treatment of essential tremor. Sci Transl Med 2021; 12:12/572/eaay7680. [PMID: 33268512 DOI: 10.1126/scitranslmed.aay7680] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 11/02/2022]
Abstract
Deep brain stimulation (DBS) is an approved therapy for the treatment of medically refractory and severe movement disorders. However, most existing neurostimulators can only apply continuous stimulation [open-loop DBS (OL-DBS)], ignoring patient behavior and environmental factors, which consequently leads to an inefficient therapy, thus limiting the therapeutic window. Here, we established the feasibility of a self-adjusting therapeutic DBS [closed-loop DBS (CL-DBS)], fully embedded in a chronic investigational neurostimulator (Activa PC + S), for three patients affected by essential tremor (ET) enrolled in a longitudinal (6 months) within-subject crossover protocol (DBS OFF, OL-DBS, and CL-DBS). Most patients with ET experience involuntary limb tremor during goal-directed movements, but not during rest. Hence, the proposed CL-DBS paradigm explored the efficacy of modulating the stimulation amplitude based on patient-specific motor behavior, suppressing the pathological tremor on-demand based on a cortical electrode detecting upper limb motor activity. Here, we demonstrated how the proposed stimulation paradigm was able to achieve clinical efficacy and tremor suppression comparable with OL-DBS in a range of movements (cup reaching, proximal and distal posture, water pouring, and writing) while having a consistent reduction in energy delivery. The proposed paradigm is an important step toward a behaviorally modulated fully embedded DBS system, capable of delivering stimulation only when needed, and potentially mitigating pitfalls of OL-DBS, such as DBS-induced side effects and premature device replacement.
Collapse
Affiliation(s)
- Enrico Opri
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.
| | - Stephanie Cernera
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Rene Molina
- Electrical and Computer Engineering, University of Florida, Gainesville, FL 32603, USA
| | - Robert S Eisinger
- Norman Fixel Institute for Neurological Diseases at UF Health, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Jackson N Cagle
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Leonardo Almeida
- Norman Fixel Institute for Neurological Diseases at UF Health, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Timothy Denison
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases at UF Health, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases at UF Health, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Aysegul Gunduz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.,Electrical and Computer Engineering, University of Florida, Gainesville, FL 32603, USA.,Norman Fixel Institute for Neurological Diseases at UF Health, Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
12
|
Akman Ö, Utkan T, Arıcıoğlu F, Güllü K, Ateş N, Karson A. Agmatine has beneficial effect on harmaline-induced essential tremor in rat. Neurosci Lett 2021; 753:135881. [PMID: 33838255 DOI: 10.1016/j.neulet.2021.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
Essential tremor (ET) is one of the most prevalent movement disorders and the most common cause of abnormal tremors. However, it cannot be treated efficiently with the currently available pharmacotherapy options. The pathophysiology of harmaline-induced tremor, most commonly used model of ET, involves various neurotransmitter systems including glutamate as well as ion channels. Agmatine, an endogenous neuromodulator, interacts with various glutamate receptor subtypes and ion channels, which have been associated with its' beneficial effects on several neurological disorders. The current study aims to assess the effect of agmatine on the harmaline model of ET. Two separate groups of male rats were injected either with saline or agmatine (40 mg/kg) 30 min prior to single intraperitoneal injection of harmaline (20 mg/kg). The percent duration, intensity and frequency of tremor and locomotor activity were evaluated by a custom-built tremor and locomotion analysis system. Pretreatment with agmatine reduced the percent tremor duration and intensity of tremor induced by harmaline, without affecting the tremor frequency. However, it did not affect the decreased spontaneous locomotor activity due to harmaline. This pattern of ameliorating effects of agmatine on harmaline-induced tremor provide the first evidence for being considered as a treatment option for ET.
Collapse
Affiliation(s)
- Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey.
| | - Tijen Utkan
- Kocaeli University, Faculty of Medicine, Department of Pharmacology, Kocaeli, Turkey.
| | - Feyza Arıcıoğlu
- Marmara University, Faculty of Pharmacy, Department of Pharmacology and Psychopharmacology Research Unit, Istanbul, Turkey.
| | - Kemal Güllü
- Department of Electrical and Electronics Engineering, İzmir Bakircay University, İzmir, Turkey.
| | - Nurbay Ateş
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| | - Ayşe Karson
- Kocaeli University, Faculty of Medicine, Department of Physiology, Kocaeli, Turkey.
| |
Collapse
|
13
|
Rüegge D, Mahendran S, Stieglitz LH, Oertel MF, Gassert R, Lambercy O, Baumann CR, Imbach LL. Tremor analysis with wearable sensors correlates with outcome after thalamic deep brain stimulation. Clin Park Relat Disord 2020; 3:100066. [PMID: 34316646 PMCID: PMC8298798 DOI: 10.1016/j.prdoa.2020.100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/12/2020] [Accepted: 08/02/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Thalamic deep brain stimulation (DBS) provides excellent tremor control in most patients with essential tremor (ET). However, not all tremor patients show clinically significant improvement after DBS surgery. Currently, there is no reliable clinical or instrument-based measure to predict how patients respond to DBS. Therefore, we set out to provide a method for tremor outcome prediction prior to surgery. METHODS We retrospectively analysed quantitative tremor data collected with inertial measurement units (IMU) in 13 patients who underwent DBS surgery in the ventral intermediate nucleus of the thalamus (VIM). All patients were diagnosed with either ET or ET-plus according to current diagnostic criteria of the movement disorder society. We used linear and logistic regression models to evaluate the influence of different tremor characteristics on tremor outcome. RESULTS We found that the ratio between the amplitude of the first overtone and the amplitude of the fundamental frequency, denoted as the Harmonic Index, has a significant influence on tremor reduction after DBS surgery. This measure shows a strong correlation with the post-operative improvement of tremor outcome based on the Whiget Tremor Rating Scale. CONCLUSION Based on these findings, we propose a novel approach to predict tremor outcome after DBS surgery. Quantitative tremor assessment adds to the preoperative prediction of DBS response and might therefore have a relevant clinical impact in the management of patients suffering from pharmacoresistant tremor.
Collapse
Affiliation(s)
- Dayle Rüegge
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sujitha Mahendran
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Lennart H. Stieglitz
- Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Markus F. Oertel
- Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Christian R. Baumann
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Lukas L. Imbach
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Altered spontaneous brain activity in essential tremor with and without resting tremor: a resting-state fMRI study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:201-212. [PMID: 32661843 DOI: 10.1007/s10334-020-00865-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Essential tremor with resting tremor (rET) often exhibits severer clinical features and more extensive functional impairment than essential tremor without resting tremor (ETwr). However, the pathophysiology of rET is still unclear. This study aims to use resting-state functional magnetic resonance imaging (rs-fMRI) to explore the alterations of brain activity between the drug-naïve patients of rET and ETwr. METHODS We recruited 19 patients with rET, 31 patients with ETwr and 25 healthy controls (HCs) to undergo a 3.0-T rs-fMRI examination. The differences of regional brain spontaneous activity between the rET, ETwr and HCs, as well as between total ET (rET + ETwr) and HCs were measured by amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The relationships between the altered brain measurements and the clinical scores were analyzed. RESULTS Compared with HCs, both ET subgroups showed significantly decreased ALFF or fALFF values in the basal ganglia, inferior orbitofrontal gyrus and insula. The rET group specifically showed decreased ALFF values in the hippocampus and motor cortices, while the ETwr group specifically evidenced increased ALFF and fALFF values in the cerebellum. DISCUSSION Regional spontaneous activity in rET and ETwr share common changes and have differences, which may suggest that the functional activities in the limbic system and cerebellum are different between the two subtypes. Improved insights into rET and ETwr subtypes and the different brain spontaneous activity will be valuable for improving our understanding of the pathophysiology of the disease.
Collapse
|
15
|
Modeling and simulation of deep brain stimulation electrodes with various active contacts. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42600-020-00060-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Lee J, Chang SY. Altered Primary Motor Cortex Neuronal Activity in a Rat Model of Harmaline-Induced Tremor During Thalamic Deep Brain Stimulation. Front Cell Neurosci 2019; 13:448. [PMID: 31680866 PMCID: PMC6803555 DOI: 10.3389/fncel.2019.00448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/19/2019] [Indexed: 01/30/2023] Open
Abstract
Although deep brain stimulation (DBS) is a clinically effective surgical treatment for essential tremor (ET), and its neurophysiological mechanisms are not fully understood. As the motor thalamus is the most popular DBS target for ET, and it is known that the thalamic nucleus plays a key role in relaying information about the external environment to the cerebral cortex, it is important to investigate mechanisms of thalamic DBS in the context of the cerebello-thalamo-cortical neuronal network. To examine this, we measured single-unit neuronal activities in the resting state in M1 during VL thalamic DBS in harmaline-induced tremor rats and analyzed neuronal activity patterns in the thalamo-cortical circuit. Four activity patterns - including oscillatory burst, oscillatory non-burst, irregular burst, and irregular non-burst - were identified by harmaline administration; and those firing patterns were differentially affected by VL thalamic DBS, which seems to drive pathologic cortical signals to signals in normal status. As specific neuronal firing patterns like oscillation or burst are considered important for information processing, our results suggest that VL thalamic DBS may modify pathophysiologic relay information rather than simply inhibit the information transmission.
Collapse
Affiliation(s)
- Jihyun Lee
- Laboratory of Brain & Cognitive Sciences for Convergence Medicine, College of Medicine, Hallym University, Anyang, South Korea
| | - Su-Youne Chang
- Department of Neurologic Surgery, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Abode-Iyamah KO, Chiang HY, Woodroffe RW, Park B, Jareczek FJ, Nagahama Y, Winslow N, Herwaldt L, Greenlee JD. Deep brain stimulation hardware-related infections: 10-year experience at a single institution. J Neurosurg 2019; 130:629-638. [PMID: 29521584 PMCID: PMC6858932 DOI: 10.3171/2017.9.jns1780] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/25/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Deep brain stimulation is an effective surgical treatment for managing some neurological and psychiatric disorders. Infection related to the deep brain stimulator (DBS) hardware causes significant morbidity: hardware explantation may be required; initial disease symptoms such as tremor, rigidity, and bradykinesia may recur; and the medication requirements for adequate disease management may increase. These morbidities are of particular concern given that published DBS-related infection rates have been as high as 23%. To date, however, the key risk factors for and the potential preventive measures against these infections remain largely uncharacterized. In this study, the authors endeavored to identify possible risk factors for DBS-related infection and analyze the efficacy of prophylactic intrawound vancomycin powder (VP). METHODS The authors performed a retrospective cohort study of patients who had undergone primary DBS implantation at a single institution in the period from December 2005 through September 2015 to identify possible risk factors for surgical site infection (SSI) and to assess the impact of perioperative (before, during, and after surgery) prophylactic antibiotics on the SSI rate. They also evaluated the effect of a change in the National Healthcare Safety Network's definition of SSI on the number of infections detected. Statistical analyses were performed using the 2-sample t-test, the Wilcoxon rank-sum test, the chi-square test, Fisher's exact test, or logistic regression, as appropriate for the variables examined. RESULTS Four hundred sixty-four electrodes were placed in 242 adults during 245 primary procedures over approximately 10.5 years; most patients underwent bilateral electrode implantation. Among the 245 procedures, 9 SSIs (3.7%) occurred within 90 days and 16 (6.5%) occurred within 1 year of DBS placement. Gram-positive bacteria were the most common etiological agents. Most patient- and procedure-related characteristics did not differ between those who had acquired an SSI and those who had not. The rate of SSIs among patients who had received intrawound VP was only 3.3% compared with 9.7% among those who had not received topical VP (OR 0.32, 95% CI 0.10-1.02, p = 0.04). After controlling for patient sex, the association between VP and decreased SSI risk did not reach the predetermined level of significance (adjusted OR 0.32, 95% CI 0.10-1.03, p = 0.06). The SSI rates were similar after staged and unstaged implantations. CONCLUSIONS While most patient-related and procedure-related factors assessed in this study were not associated with the risk for an SSI, the data did suggest that intrawound VP may help to reduce the SSI risk after DBS implantation. Furthermore, given the implications of SSI after DBS surgery and the frequency of infections occurring more than 90 days after implantation, continued follow-up for at least 1 year after such a procedure is prudent to establish the true burden of these infections and to properly treat them when they do occur.
Collapse
Affiliation(s)
- Kingsley O. Abode-Iyamah
- Departments of Neurosurgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Hsiu-Yin Chiang
- Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Royce W. Woodroffe
- Departments of Neurosurgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brian Park
- The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Yasunori Nagahama
- Departments of Neurosurgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Nolan Winslow
- The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Loreen Herwaldt
- Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Program of Hospital Epidemiology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Department of Epidemiology, The University of Iowa College of Public Health, Iowa City, IA 55242, USA
| | - Jeremy D.W. Greenlee
- Departments of Neurosurgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Bretsztajn L, Gedroyc W. Brain-focussed ultrasound: what's the "FUS" all about? A review of current and emerging neurological applications. Br J Radiol 2018; 91:20170481. [PMID: 29419328 PMCID: PMC6221771 DOI: 10.1259/bjr.20170481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 11/05/2022] Open
Abstract
MR-guided focussed ultrasound surgery (MRgFUS) allows for precise non-invasive thermal ablation of target tissues for a wide range of clinical applications. It is an innovative and rapidly expanding technology, which has already established itself as an effective and safe incisionless alternative in the treatment of various soft tissue tumours, with many more research studies underway to extend its therapeutic envelope. The non-invasiveness of the procedure makes FUS particularly attractive in functional neurosurgery, where existing treatment options are not suitable for all patients. Several clinical trials have demonstrated the feasibility and favourable safety profile of MR-guided focused ultrasound surgery in essential tremor, Parkinson's disease and other neurological conditions. This article reviews the existing evidence base for the neurological applications of FUS and the evidence for its emerging roles in the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Laure Bretsztajn
- Radiology Department, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wladyslaw Gedroyc
- Radiology Department, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
19
|
Neely RM, Piech DK, Santacruz SR, Maharbiz MM, Carmena JM. Recent advances in neural dust: towards a neural interface platform. Curr Opin Neurobiol 2018; 50:64-71. [DOI: 10.1016/j.conb.2017.12.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/01/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
|
20
|
Ko AL, Magown P, Ozpinar A, Hamzaoglu V, Burchiel KJ. Asleep Deep Brain Stimulation Reduces Incidence of Intracranial Air during Electrode Implantation. Stereotact Funct Neurosurg 2018; 96:83-90. [PMID: 29847829 DOI: 10.1159/000488150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Asleep deep brain stimulation (aDBS) implantation replaces microelectrode recording for image-guided implantation, shortening the operative time and reducing cerebrospinal fluid egress. This may decrease pneumocephalus, thus decreasing brain shift during implantation. OBJECTIVE To compare the incidence and volume of pneumocephalus during awake (wkDBS) and aDBS procedures. METHODS A retrospective review of bilateral DBS cases performed at Oregon Health & Science University from 2009 to 2017 was undertaken. Postimplantation imaging was reviewed to determine the presence and volume of intracranial air and measure cortical brain shift. RESULTS Among 371 patients, pneumocephalus was noted in 66% of wkDBS and 15.6% of aDBS. The average volume of air was significantly higher in wkDBS than aDBS (8.0 vs. 1.8 mL). Volumes of air greater than 7 mL, which have previously been linked to brain shift, occurred significantly more frequently in wkDBS than aDBS (34 vs 5.6%). wkDBS resulted in significantly larger cortical brain shifts (5.8 vs. 1.2 mm). CONCLUSIONS We show that aDBS reduces the incidence of intracranial air, larger air volumes, and cortical brain shift. Large volumes of intracranial air have been correlated to shifting of brain structures during DBS procedures, a variable that could impact accuracy of electrode placement.
Collapse
Affiliation(s)
- Andrew L Ko
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA.,Department of Neurological Surgery, University of Washington Medical Center and Harborview Medical Center, Seattle, Washington, USA
| | - Philippe Magown
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Alp Ozpinar
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA.,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vural Hamzaoglu
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Kim J Burchiel
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
21
|
Magnetic Resonance-Guided Focused Ultrasound Neurosurgery for Essential Tremor: A Health Technology Assessment. ONTARIO HEALTH TECHNOLOGY ASSESSMENT SERIES 2018; 18:1-141. [PMID: 29805721 PMCID: PMC5963668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND The standard treatment option for medication-refractory essential tremor is invasive neurosurgery. A new, noninvasive alternative is magnetic resonance-guided focused ultrasound (MRgFUS) neurosurgery. We aimed to determine the effectiveness, safety, and cost-effectiveness of MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario. We also spoke with people with essential tremor to gain an understanding of their experiences and thoughts regarding treatment options, including MRgFUS neurosurgery. METHODS We performed a systematic review of the clinical literature published up to April 11, 2017, that examined MRgFUS neurosurgery alone or compared with other interventions for the treatment of moderate to severe, medication-refractory essential tremor. We assessed the risk of bias of each study and the quality of the body of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. We performed a systematic review of the economic literature and created Markov cohort models to assess the cost-effectiveness of MRgFUS neurosurgery compared with other treatment options, including no surgery. We also estimated the budget impact of publicly funding MRgFUS neurosurgery in Ontario for the next 5 years. To contextualize the potential value of MRgFUS neurosurgery as a treatment option for essential tremor, we spoke with people with essential tremor and their families. RESULTS Nine studies met our inclusion criteria for the clinical evidence review. In noncomparative studies, MRgFUS neurosurgery was found to significantly improve tremor severity and quality of life and to significantly reduce functional disability (GRADE: very low). It was also found to be significantly more effective than a sham procedure (GRADE: high). We found no significant difference in improvements in tremor severity, functional disability, or quality of life between MRgFUS neurosurgery and deep brain stimulation (GRADE: very low). We found no significant difference in improvement in tremor severity compared with radiofrequency thalamotomy (GRADE: low). MRgFUS neurosurgery has a favourable safety profile.We estimated that MRgFUS neurosurgery has a mean cost of $23,507 and a mean quality-adjusted survival of 3.69 quality-adjusted life-years (QALYs). We also estimated that the mean costs and QALYs of radiofrequency thalamotomy and deep brain stimulation are $14,978 and 3.61 QALYs, and $57,535 and 3.94 QALYs, respectively. For people ineligible for invasive neurosurgery, we estimated the incremental cost-effectiveness ratio (ICER) of MRgFUS neurosurgery compared with no surgery as $43,075 per QALY gained. In people eligible for invasive neurosurgery, the ICER of MRgFUS neurosurgery compared with radiofrequency thalamotomy is $109,795 per QALY gained; when deep brain stimulation is compared with MRgFUS neurosurgery, the ICER is $134,259 per QALY gained. Of note however, radiofrequency thalamotomy is performed very infrequently in Ontario. We also estimated that the budget impact of publicly funding MRgFUS neurosurgery in Ontario at the current case load (i.e., 48 cases/year) would be about $1 million per year for the next 5 years.People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences with the procedure. The tremor reduction they experienced improved their ability to perform activities of daily living and improved their quality of life. CONCLUSIONS MRgFUS neurosurgery is an effective and generally safe treatment option for moderate to severe, medication-refractory essential tremor. It provides a treatment option for people ineligible for invasive neurosurgery and offers a noninvasive option for all people considering neurosurgery.For people ineligible for invasive neurosurgery, MRgFUS neurosurgery is cost-effective compared with no surgery. In people eligible for invasive neurosurgery, MRgFUS neurosurgery may be one of several reasonable options. Publicly funding MRgFUS neurosurgery for the treatment of moderate to severe, medication-refractory essential tremor in Ontario at the current case load would have a net budget impact of about $1 million per year for the next 5 years.People with essential tremor who had undergone MRgFUS neurosurgery reported positive experiences. They liked that it was a noninvasive procedure and reported a substantial reduction in tremor that resulted in an improvement in their quality of life.
Collapse
|
22
|
Chakravorti S, Morgan VL, Trujillo-Diaz P, Wirz R, Dawant BM. A Structural Connectivity Approach to Validate a Model-based Technique for the Segmentation of the Pulvinar Complex. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10578. [PMID: 30467450 DOI: 10.1117/12.2293685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pulvinar of the thalamus is a higher-order thalamic nucleus that is responsible for gating information flow to the cortical regions of the brain. It is involved in several cortico-thalamocortical relay circuits and is known to be affected in a number of neurological disorders. Segmenting the pulvinar in clinically acquired images is important to support studies exploring its role in brain function. In recent years, we have proposed an active shape model method to segment multiple thalamic nuclei, including the pulvinar. The model was created by manual delineation of high resolution 7T images and the process was guided by the Morel stereotactic atlas. However, this model is based on a small library of healthy subjects, and it is important to validate the reliability of the segmentation method on a larger population of clinically acquired images. The pulvinar is known to have particularly strong white matter connections to the hippocampus, which allows us to identify the pulvinar from thalamic regions of high hippocampal structural connectivity. In this study, we obtained T1-weighted and diffusion MR data from 43 healthy volunteers using a clinical 3T MRI scanner. We applied the segmentation method to the T1-weighted images to obtain the intrathalamic nuclei, and we calculated the connectivity maps between the hippocampus and thalamus using the diffusion images. Our results show that the shape model segmentation consistently localizes the pulvinar in the region with the highest hippocampal connectivity. The proposed method can be extended to other nuclei to further validate our segmentation method.
Collapse
Affiliation(s)
- Srijata Chakravorti
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Victoria L Morgan
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paula Trujillo-Diaz
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raul Wirz
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Benoit M Dawant
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
23
|
Wang D, Liu X, Zhou B, Kuang W, Guo T. Advanced research on deep brain stimulation in treating mental disorders. Exp Ther Med 2017; 15:3-12. [PMID: 29250146 DOI: 10.3892/etm.2017.5366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
Deep brain stimulation is a method that involves using an electric stimulus on a specific target in the brain with stereotaxis. It is a minimally invasive, safe, adjustable and reversible nerve involvement technology. At present, this technique is widely applied to treat movement disorders and has produced promising effects on mental symptoms, including combined anxiety and depression. Deep brain stimulation has therefore been employed as a novel treatment for depression, obsessive-compulsive disorder, habituation, Tourette's syndrome, presenile dementia, anorexia nervosa and other refractory mental illnesses. Many encouraging results have been reported. The aim of the present review was to briefly describe the mechanisms, target selection, side effects, ethical arguments and risks associated with deep brain stimulation. Although deep brain stimulation is a developing and promising treatment, a large amount of research is still required to determine its curative effect, and the selection of patients and targets must be subjected to strict ethical standards.
Collapse
Affiliation(s)
- Dongxin Wang
- Mental Health Institute of Hunan Province, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Xuejun Liu
- Mental Health Institute of Hunan Province, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Bin Zhou
- Surgery Department of Mental Disease, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Weiping Kuang
- Surgery Department of Mental Disease, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Tiansheng Guo
- Mental Health Institute of Hunan Province, The Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
24
|
Chen T, Mirzadeh Z, Chapple KM, Lambert M, Evidente VGH, Moguel-Cobos G, Oravivattanakul S, Mahant P, Ponce FA. Intraoperative test stimulation versus stereotactic accuracy as a surgical end point: a comparison of essential tremor outcomes after ventral intermediate nucleus deep brain stimulation. J Neurosurg 2017; 129:290-298. [PMID: 29027853 DOI: 10.3171/2017.3.jns162487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Ventral intermediate nucleus deep brain stimulation (DBS) for essential tremor is traditionally performed with intraoperative test stimulation and conscious sedation, without general anesthesia (GA). Recently, the authors reported retrospective data on 17 patients undergoing DBS after induction of GA with standardized anatomical coordinates on T1-weighted MRI sequences used for indirect targeting. Here, they compare prospectively collected data from essential tremor patients undergoing DBS both with GA and without GA (non-GA). METHODS Clinical outcomes were prospectively collected at baseline and 3-month follow-up for patients undergoing DBS surgery performed by a single surgeon. Stereotactic, euclidean, and radial errors of lead placement were calculated. Functional (activities of daily living), quality of life (Quality of Life in Essential Tremor [QUEST] questionnaire), and tremor severity outcomes were compared between groups. RESULTS Fifty-six patients underwent surgery: 16 without GA (24 electrodes) and 40 with GA (66 electrodes). The mean baseline functional scores and QUEST summary indices were not different between groups (p = 0.91 and p = 0.59, respectively). Non-GA and GA groups did not differ significantly regarding mean postoperative percentages of functional improvement (non-GA, 47.9% vs GA, 48.1%; p = 0.96) or QUEST summary indices (non-GA, 79.9% vs GA, 74.8%; p = 0.50). Accuracy was comparable between groups (mean radial error 0.9 ± 0.3 mm for non-GA and 0.9 ± 0.4 mm for GA patients) (p = 0.75). The mean euclidean error was also similar between groups (non-GA, 1.1 ± 0.6 mm vs GA, 1.2 ± 0.5 mm; p = 0.92). No patient had an intraoperative complication, and the number of postoperative complications was not different between groups (non-GA, n = 1 vs GA, n = 10; p = 0.16). CONCLUSIONS DBS performed with the patient under GA to treat essential tremor is as safe and effective as traditional DBS surgery with intraoperative test stimulation while the patient is under conscious sedation without GA.
Collapse
Affiliation(s)
| | | | | | | | | | - Guillermo Moguel-Cobos
- 2Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | - Srivadee Oravivattanakul
- 2Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | - Padma Mahant
- 2Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | | |
Collapse
|
25
|
Reddy S, Fenoy A, Furr-Stimming E, Schiess M, Mehanna R. Does the Use of Intraoperative Microelectrode Recording Influence the Final Location of Lead Implants in the Ventral Intermediate Nucleus for Deep Brain Stimulation? THE CEREBELLUM 2017; 16:421-426. [PMID: 27491538 DOI: 10.1007/s12311-016-0816-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To determine if the use of intraoperative microelectrode recording (MER) influences the final location of lead implant in deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM), and to evaluate the incidence of associated complications. The usefulness of intraoperative MER in DBS is debated, some centers suggesting it increases complications without additional benefit. We conducted a retrospective chart review of all patients who underwent VIM DBS with MER at the University of Texas Health Science Center in Houston from June 1, 2009 to October 1, 2013. Initial (MRI determined) and final (intraoperative MER determined) coordinates of implant were compared. To assess incidences of hemorrhagic and infectious complications, we reviewed postoperative CT scans and follow-up notes. Forty-five lead implants on 24 patients were reviewed. The mean age at implantation was 62.42 years (range 18-83). The average duration from diagnosis to surgery was 21.5 years (range 1-52). A statistically significant mean difference was observed in the superior-inferior plane (0.52 ± 0.80 mm inferiorly, p < 0.05) and the anterior-posterior plane (0.45 ± 0.86 mm posteriorly, p < 0.05). A non-statistically significant difference was also observed in the medial-lateral plane (0.02± 0.15 mm, p > 0.05). One patient developed an infectious complication (4.2 %) that required removal of leads; two patients had minimal asymptomatic intra-ventricular bleeding (8.3 %). In our DBS center, intraoperative MER in VIM DBS implant does not seem to have a higher rate of surgical complications compared to historical series not using MER, and might also be useful in determining the final lead location.
Collapse
Affiliation(s)
- Sujan Reddy
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Albert Fenoy
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Mya Schiess
- University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Raja Mehanna
- University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
26
|
Cury RG, Fraix V, Castrioto A, Pérez Fernández MA, Krack P, Chabardes S, Seigneuret E, Alho EJL, Benabid AL, Moro E. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology 2017; 89:1416-1423. [PMID: 28768840 DOI: 10.1212/wnl.0000000000004295] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/05/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To report on the long-term outcomes of deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) in Parkinson disease (PD), essential tremor (ET), and dystonic tremor. METHODS One hundred fifty-nine patients with PD, ET, and dystonia underwent VIM DBS due to refractory tremor at the Grenoble University Hospital. The primary outcome was a change in the tremor scores at 1 year after surgery and at the latest follow-up (21 years). Secondary outcomes included the relationship between tremor score reduction over time and the active contact position. Tremor scores (Unified Parkinson's Disease Rating Scale-III, items 20 and 21; Fahn, Tolosa, Marin Tremor Rating Scale) and the coordinates of the active contacts were recorded. RESULTS Ninety-eight patients were included. Patients with PD and ET had sustained improvement in tremor with VIM stimulation (mean improvement, 70% and 66% at 1 year; 63% and 48% beyond 10 years, respectively; p < 0.05). There was no significant loss of stimulation benefit over time (p > 0.05). Patients with dystonia exhibited a moderate response at 1-year follow-up (41% tremor improvement, p = 0.027), which was not sustained after 5 years (30% improvement, p = 0.109). The more dorsal active contacts' coordinates in the right lead were related to a better outcome 1 year after surgery (p = 0.029). During the whole follow-up, forty-eight patients (49%) experienced minor side effects, whereas 2 (2.0%) had serious events (brain hemorrhage and infection). CONCLUSIONS VIM DBS is an effective long-term (beyond 10 years) treatment for tremor in PD and ET. Effects on dystonic tremor were modest and transient. CLASSIFICATION OF EVIDENCE This provides Class IV evidence. It is an observational study.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Valerie Fraix
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Anna Castrioto
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Maricely Ambar Pérez Fernández
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Paul Krack
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Stephan Chabardes
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Eric Seigneuret
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Eduardo Joaquim Lopes Alho
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Alim-Louis Benabid
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France
| | - Elena Moro
- From the Service de Neurologie (R.G.C., V.F., A.C., M.A.P.F., E.M.), Service de Neurochirurgie (M.A.P.F., E.S.), Centre Hospitalier Universitaire de Grenoble, Université Grenoble Alpes, INSERM U1216, Grenoble, France; Department of Neurology (R.G.C., M.A.P.F., E.J.L.A.), School of Medicine, University of São Paulo, São Paulo, Brazil; Hospital Dr. Dario Contreras (M.A.P.F.), Santo Domingo, Republica Dominicana; Service de Neurologie (P.K., S.C.), CHU de Genève, Switzerland; and Clinatec (A.-L.B.), Centre Hospitalier Universitaire de Grenoble, France.
| |
Collapse
|
27
|
Fishman PS. Thalamotomy for essential tremor: FDA approval brings brain treatment with FUS to the clinic. J Ther Ultrasound 2017; 5:19. [PMID: 28717511 PMCID: PMC5508673 DOI: 10.1186/s40349-017-0096-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/14/2017] [Indexed: 12/05/2022] Open
Affiliation(s)
- Paul S Fishman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| |
Collapse
|
28
|
Deep Brain Stimulation in Parkinson's Disease: New and Emerging Targets for Refractory Motor and Nonmotor Symptoms. PARKINSONS DISEASE 2017; 2017:5124328. [PMID: 28761773 PMCID: PMC5518514 DOI: 10.1155/2017/5124328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by bradykinesia, tremor, rigidity, and postural instability (PI), in addition to numerous nonmotor manifestations. Many pharmacological therapies now exist to successfully treat PD motor symptoms; however, as the disease progresses, it often becomes challenging to treat with medications alone. Deep brain stimulation (DBS) has become a crucial player in PD treatment, particularly for patients who have disabling motor complications from medical treatment. Well-established DBS targets include the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and to a lesser degree the ventral intermediate nucleus (VIM) of the thalamus. Studies of alternative DBS targets for PD are ongoing, the majority of which have shown some clinical benefit; however, more carefully designed and controlled studies are needed. In the present review, we discuss the role of these new and emerging DBS targets in treating refractory axial motor symptoms and other motor and nonmotor symptoms (NMS).
Collapse
|
29
|
Affiliation(s)
- Kejia Hu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, USA
| | - Ziev B. Moses
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendong Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- MGH-HMS Center for Nervous System Repair, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Chockalingam A, Boggs H, Prusik J, Ramirez-Zamora A, Feustel P, Belasen A, Youn Y, Fama C, Haller J, Pilitsis J. Evaluation of Quantitative Measurement Techniques for Head Tremor With Thalamic Deep Brain Stimulation. Neuromodulation 2017; 20:464-470. [DOI: 10.1111/ner.12566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 11/29/2022]
Affiliation(s)
| | - Hans Boggs
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Julia Prusik
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| | | | - Paul Feustel
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| | - Abigail Belasen
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Youngwon Youn
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Chris Fama
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Jessica Haller
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
| | - Julie Pilitsis
- Department of Neurosurgery; Albany Medical Center; Albany NY USA
- Department of Neuroscience and Experimental Therapeutics; Albany Medical College; Albany NY USA
| |
Collapse
|
31
|
Sajonz BEA, Amtage F, Reinacher PC, Jenkner C, Piroth T, Kätzler J, Urbach H, Coenen VA. Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT): Study Protocol of a Randomized Controlled Feasibility Trial. JMIR Res Protoc 2016; 5:e244. [PMID: 28007690 PMCID: PMC5216255 DOI: 10.2196/resprot.6885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/16/2022] Open
Abstract
Background Essential tremor is a movement disorder that can result in profound disability affecting the quality of life. Medically refractory essential tremor can be successfully reduced by deep brain stimulation (DBS) traditionally targeting the thalamic ventral intermediate nucleus (Vim). Although this structure can be identified with magnetic resonance (MR) imaging nowadays, Vim-DBS electrodes are still implanted in the awake patient with intraoperative tremor testing to achieve satisfactory tremor control. This can be attributed to the fact that the more effective target of DBS seems to be the stimulation of fiber tracts rather than subcortical nuclei like the Vim. There is evidence that current coverage of the dentatorubrothalamic tract (DRT) results in good tremor control in Vim-DBS. Diffusion tensor MR imaging (DTI) tractography-assisted stereotactic surgery targeting the DRT would therefore not rely on multiple trajectories and intraoperative tremor testing in the awake patient, bearing the potential of more patient comfort and reduced operation-related risks. This is the first randomized controlled trial comparing DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia with stereotactic surgery of thalamic/subthalamic region as conventionally used. Objective This clinical pilot trial aims at demonstrating safety of DTI tractography-assisted stereotactic surgery in general anesthesia and proving its equality compared to conventional stereotactic surgery with intraoperative testing in the awake patient. Methods The Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT) trial is a single-center investigator-initiated, randomized, controlled, observer-blinded trial. A total of 24 patients with medically refractory essential tremor will be randomized to either DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia or stereotactic surgery of the thalamic/subthalamic region as conventionally used. The primary objective is to assess the tremor reduction, obtained by the Fahn-Tolosa-Marin Tremor Rating Scale in the 2 treatment groups. Secondary objectives include (among others) assessing the quality of life, optimal electrode contact positions, and safety of the intervention. The study protocol has been approved by the independent ethics committee of the University of Freiburg. Results Recruitment to the DISTINCT trial opened in September 2015 and is expected to close in June 2017. At the time of manuscript submission the trial is open to recruitment. Conclusions The DISTINCT trial is the first to compare DTI tractography-assisted stereotactic surgery with target point of the DRT in general anesthesia to stereotactic surgery of the thalamic/subthalamic region as conventionally used. It can serve as a cornerstone for the evolving technique of DTI tractography-assisted stereotactic surgery. ClinicalTrial ClinicalTrials.gov NCT02491554; https://clinicaltrials.gov/ct2/show/NCT02491554 (Archived by WebCite at http://www.webcitation.org/6mezLnB9D). German Clinical Trials Register DRKS00008913; http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008913 (Archived by WebCite at http://www.webcitation.org/6mezCtxhS).
Collapse
Affiliation(s)
- Bastian Elmar Alexander Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Amtage
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Christoph Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Jenkner
- Clinical Trials Unit Freiburg, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Piroth
- Department of Neurology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kätzler
- Clinical Trials Unit Freiburg, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arnd Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Ehlen F, Vonberg I, Tiedt HO, Horn A, Fromm O, Kühn AA, Klostermann F. Thalamic deep brain stimulation decelerates automatic lexical activation. Brain Cogn 2016; 111:34-43. [PMID: 27816778 DOI: 10.1016/j.bandc.2016.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/23/2016] [Accepted: 10/05/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) is a therapeutic option for patients with essential tremor. Despite a generally low risk of side effects, declines in verbal fluency (VF) have previously been reported. OBJECTIVES We aimed to specify effects of VIM-DBS on major cognitive operations needed for VF task performance, represented by clusters and switches. Clusters are word production spurts, thought to arise from automatic activation of associated information pertaining to a given lexical field. Switches are slow word-to-word transitions, presumed to indicate controlled operations for stepping from one lexical field to another. PATIENTS & METHODS Thirteen essential tremor patients with VIM-DBS performed verbal fluency tasks in their VIM-DBS ON and OFF conditions. Clusters and switches were formally defined by mathematical criteria. All results were compared to those of fifteen healthy control subjects, and significant OFF-ON-change scores were correlated to stimulation parameters. RESULTS Patients produced fewer words than healthy controls. DBS ON compared to DBS OFF aggravated this deficit by prolonging the intervals between words within clusters, whereas switches remained unaffected. This stimulation effect correlated with more anterior electrode positions. CONCLUSION VIM-DBS seems to influence word output dynamics during verbal fluency tasks on the level of word clustering. This suggests a perturbation of automatic lexical co-activation by thalamic stimulation, particularly if delivered relatively anteriorly. The findings are discussed in the context of the hypothesized role of the thalamus in lexical processing.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Isabelle Vonberg
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Hannes O Tiedt
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor Neuroscience Group, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, 13353 Berlin, Germany; Laboratory for Brain Network Imaging and Modulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ortwin Fromm
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany
| | - Andrea A Kühn
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor Neuroscience Group, Campus Virchow-Klinikum (CVK), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Fabian Klostermann
- Charité - Universitätsmedizin Berlin, Department of Neurology, Motor and Cognition Group, Campus Benjamin Franklin (CBF), Hindenburgdamm 30, 12000 Berlin, Germany.
| |
Collapse
|
33
|
Abbassian H, Whalley BJ, Sheibani V, Shabani M. Cannabinoid type 1 receptor antagonism ameliorates harmaline-induced essential tremor in rat. Br J Pharmacol 2016; 173:3196-3207. [PMID: 27545646 DOI: 10.1111/bph.13581] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Essential tremor (ET) is a neurological disorder with unknown aetiology. Its symptoms include cerebellar motor disturbances, cognitive and personality changes, hearing and olfactory deficits. Hyperactivity of excitotoxic cerebellar climbing fibres may underlie essential tremor and has been induced in rodents by systemic harmaline administration. Cannabinoid (CB) receptor agonists can cause motor disturbances; although, there are also anecdotal reports of therapeutic benefits of cannabis in motor disorders. We set out to establish the effects of CB receptor agonism and antagonism on an established rodent model of ET using a battery of accepted behaviour assays in order to determine the risk and therapeutic potential of modulating the endocannabinoid system in ET. EXPERIMENTAL APPROACH Behavioural effects of systemic treatment with a CB receptor agonist (0.1, 0.5 and 1 mg kg-1 WIN55, 212-2) or two CB1 receptor antagonists (1 mg kg-1 AM251 and 10 mg kg-1 rimonabant) on tremor induced in rats by harmaline (30 mg kg-1 ; i.p.), were assessed using tremor scoring, open field, rotarod, grip and gait tests. KEY RESULTS Overall, harmaline induced robust tremor that was typically worsened across the measured behavioural domains by CB receptor agonism but ameliorated by CB1 receptor antagonism. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence of the effects of modulating the endocannabinoid system on motor function in the harmaline model of ET. Our data suggest that CB1 receptor manipulation warrants clinical investigation as a therapeutic approach to protection against behavioural disturbances associated with ET.
Collapse
Affiliation(s)
- Hassan Abbassian
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Benjamin J Whalley
- Department of Pharmacy, School of Chemistry, Food and Nutritional Sciences and Pharmacy, University of Reading, Whiteknights, Reading, Berkshire, UK.
| | - Vahid Sheibani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran. ,
| |
Collapse
|
34
|
Perera T, Yohanandan SAC, Thevathasan W, Jones M, Peppard R, Evans AH, Tan JL, McKay CM, McDermott HJ. Clinical validation of a precision electromagnetic tremor measurement system in participants receiving deep brain stimulation for essential tremor. Physiol Meas 2016; 37:1516-27. [PMID: 27511464 DOI: 10.1088/0967-3334/37/9/1516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tremor is characterized commonly through subjective clinical rating scales. Accelerometer-based techniques for objective tremor measurement have been developed in the past, yet these measures are usually presented as an unintuitive dimensionless index without measurement units. Here we have developed a tool (TREMBAL) to provide quantifiable and objective measures of tremor severity using electromagnetic motion tracking. We aimed to compare TREMBAL's objective measures with clinical tremor ratings and determine the test-retest reliability of our technique. Eight participants with ET receiving deep brain stimulation (DBS) therapy were consented. Tremor was simultaneously recorded using TREMBAL and video during DBS adjustment. After each adjustment, participants performed a hands-outstretched task (for postural tremor) and a finger-nose task (for kinetic tremor). Video recordings were de-identified, randomized, and shown to a panel of movement disorder specialists to obtain their ratings. Regression analysis and Pearson's correlations were used to determine agreement between datasets. Subsets of the trial were repeated to assess test-retest reliability. Tremor amplitude and velocity measures were in close agreement with mean clinical ratings (r > 0.90) for both postural and kinetic tremors. Test-retest reliability for both translational and rotational components of tremor showed intra-class correlations >0.80. TREMBAL assessments showed that tremor gradually improved with increasing DBS therapy-this was also supported by clinical observation. TREMBAL measurements are a sensitive, objective and reliable assessment of tremor severity. This tool may have application in clinical trials and in aiding automated optimization of deep brain stimulation.
Collapse
Affiliation(s)
- Thushara Perera
- The Bionics Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia. Medical Bionics Department, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen Y, Hao H, Chen H, Tian Y, Li L. The study on a real-time remote monitoring system for Parkinson's disease patients with deep brain stimulators. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2014:1358-61. [PMID: 25570219 DOI: 10.1109/embc.2014.6943851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Deep Brain Stimulation (DBS) has become a well-accepted treatment for Parkinson's disease patients around the world. However, postoperative care of the stimulators usually puts a heavy burden on the patients' families, especially in China. To solve the problem, this study developed a real-time remote monitoring system for deep brain stimulators. Based on Internet technologies, the system offers remote adjustment service so that in vivo stimulators could be programmed at patients' home by clinic caregivers. We tested the system on an experimental condition and the results have proved that this early exploration of remote monitoring deep brain stimulators was successful.
Collapse
|
36
|
Ehlen F, Vonberg I, Kühn AA, Klostermann F. Effects of thalamic deep brain stimulation on spontaneous language production. Neuropsychologia 2016; 89:74-82. [PMID: 27267813 DOI: 10.1016/j.neuropsychologia.2016.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/18/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022]
Abstract
The thalamus is thought to contribute to language-related processing, but specifications of this notion remain vague. An assessment of potential effects of thalamic deep brain stimulation (DBS) on spontaneous language may help to delineate respective functions. For this purpose, we analyzed spontaneous language samples from thirteen (six female / seven male) patients with essential tremor treated with DBS of the thalamic ventral intermediate nucleus (VIM) in their respective ON vs. OFF conditions. Samples were obtained from semi-structured interviews and examined on multidimensional linguistic levels. In the VIM-DBS ON condition, participants used a significantly higher proportion of paratactic as opposed to hypotactic sentence structures. This increase correlated negatively with the change in the more global cognitive score, which in itself did not change significantly. In conclusion, VIM-DBS appears to induce the use of a simplified syntactic structure. The findings are discussed in relation to concepts of thalamic roles in language-related cognitive behavior.
Collapse
Affiliation(s)
- Felicitas Ehlen
- Charité - University Medicine Berlin, Campus Benjamin Franklin, Department of Neurology, Motor and Cognition Group, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Isabelle Vonberg
- Charité - University Medicine Berlin, Campus Benjamin Franklin, Department of Neurology, Motor and Cognition Group, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Andrea A Kühn
- Charité - University Medicine Berlin, Campus Virchow Klinikum, Department of Neurology, Motor Neuroscience Group, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Fabian Klostermann
- Charité - University Medicine Berlin, Campus Benjamin Franklin, Department of Neurology, Motor and Cognition Group, Hindenburgdamm 30, 12203 Berlin, Germany.
| |
Collapse
|
37
|
Voice Tremor in Patients With Essential Tremor: Effects of Deep Brain Stimulation of Caudal Zona Incerta. J Voice 2016; 30:228-33. [DOI: 10.1016/j.jvoice.2015.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/02/2015] [Indexed: 11/23/2022]
|
38
|
Gallay MN, Moser D, Rossi F, Pourtehrani P, Magara AE, Kowalski M, Arnold A, Jeanmonod D. Incisionless transcranial MR-guided focused ultrasound in essential tremor: cerebellothalamic tractotomy. J Ther Ultrasound 2016; 4:5. [PMID: 26877873 PMCID: PMC4752806 DOI: 10.1186/s40349-016-0049-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/08/2016] [Indexed: 11/30/2022] Open
Abstract
Background Already in the late 1960s and early 1970s, targeting of the “posterior subthalamic area (PSA)” was explored by different functional neurosurgical groups applying the radiofrequency (RF) technique to treat patients suffering from essential tremor (ET). Recent advances in magnetic resonance (MR)-guided focused ultrasound (MRgFUS) technology offer the possibility to perform thermocoagulation of the cerebellothalamic fiber tract in the PSA without brain penetration, allowing a strong reduction of the procedure-related risks and increased accuracy. We describe here the first results of the MRgFUS cerebellothalamic tractotomy (CTT). Methods Twenty-one consecutive patients suffering from chronic (mean disease duration 29.9 years), therapy-resistant ET were treated with MRgFUS CTT. Three patients received bilateral treatment with a 1-year interval. Primary relief assessment indicators were the Essential Tremor Rating Scale (Fahn, Tolosa, and Marin) (ETRS) taken at follow-up (3 months to 2 years) with accent on the hand function subscores (HF16 for treated hand and HF32 for both hands) and handwriting. The evolution of seven patients with HF32 above 28 points over 32 (group 1) differentiated itself from the others’ (group 2) and was analyzed separately. Global tremor relief estimations were provided by the patients. Lesion reconstruction and measurement of targeting accuracy were done on 2-day post-treatment MR pictures for each CTT lesion. Results The mean ETRS score for all patients was 57.6 ± 13.2 at baseline and 25.8 ± 17.6 at 1 year (n = 10). The HF16 score reduction was 92 % in group 2 at 3 months and stayed stable at 1 year (90 %). Group 1 showed only an improvement of 41 % at 3 months and 40 % at 1 year. Nevertheless, two patients of group 1 treated bilaterally had an HF16 score reduction of 75 and 88 % for the dominant hand at 1 year after the second side. The mean patient estimation of global tremor relief after CTT was 92 % at 2 days and 77 % at 1-year follow-up. Conclusions CTT with MRgFUS was shown to be an effective and safe approach for patients with therapy-refractory essential tremor, combining neurological function sparing with precise targeting and the possibility to treat patients bilaterally.
Collapse
Affiliation(s)
- Marc N Gallay
- Sonimodul, Center for Ultrasound Functional Neurosurgery, Leopoldstrasse 1, CH-4500 Solothurn, Switzerland
| | - David Moser
- Sonimodul, Center for Ultrasound Functional Neurosurgery, Leopoldstrasse 1, CH-4500 Solothurn, Switzerland
| | - Franziska Rossi
- Sonimodul, Center for Ultrasound Functional Neurosurgery, Leopoldstrasse 1, CH-4500 Solothurn, Switzerland
| | - Payam Pourtehrani
- Rodiag Diagnostics Centers, Leopoldstrasse 1, CH-4500 Solothurn, Switzerland
| | - Anouk E Magara
- Praxisgemeinschaft für Neurologie, Thunstrasse 95, CH-3006 Bern, Switzerland
| | - Milek Kowalski
- Privatklinik Obach, Leopoldstrasse 5, CH-4500 Solothurn, Switzerland
| | - Alexander Arnold
- Privatklinik Obach, Leopoldstrasse 5, CH-4500 Solothurn, Switzerland
| | - Daniel Jeanmonod
- Sonimodul, Center for Ultrasound Functional Neurosurgery, Leopoldstrasse 1, CH-4500 Solothurn, Switzerland
| |
Collapse
|
39
|
Willsie A, Dorval A. Fabrication and initial testing of the μDBS: a novel Deep Brain Stimulation electrode with thousands of individually controllable contacts. Biomed Microdevices 2015; 17:9961. [PMID: 25981752 DOI: 10.1007/s10544-015-9961-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High frequency electrical stimulation of deep brain structures such as the subthalamic nucleus in Parkinson's disease or thalamus for essential tremor is used clinically to reduce symptom severity. Deep brain stimulation activates neurons in specific brain structures and connection pathways, overriding aberrant neural activity associated with symptoms. While optimal deep brain stimulation might activate a particular neural structure precisely, existing deep brain stimulation can only generate roughly-spherical regions of activation that do not overlap with any target anatomy. Additionally, side effects linked to stimulation may be the result of limited control over placement of stimulation and its subsequent spread out of optimal target boundaries. We propose a novel lead with thousands of individually controllable contacts capable of asymmetric stimulation profiles. Here we outline the design motivation, manufacturing process, and initial testing of this new electrode design, placing it on track for further directional stimulation studies.
Collapse
|
40
|
Chalah MA, Lefaucheur JP, Ayache SS. Non-invasive Central and Peripheral Stimulation: New Hope for Essential Tremor? Front Neurosci 2015; 9:440. [PMID: 26635516 PMCID: PMC4649015 DOI: 10.3389/fnins.2015.00440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/01/2015] [Indexed: 12/31/2022] Open
Abstract
Essential tremor (ET) is among the most frequent movement disorders. It usually manifests as a postural and kinematic tremor of the arms, but may also involve the head, voice, lower limbs, and trunk. An oscillatory network has been proposed as a neural correlate of ET, and is mainly composed of the olivocerebellar system, thalamus, and motor cortex. Since pharmacological agents have limited benefits, surgical interventions like deep brain stimulation are the last-line treatment options for the most severe cases. Non-invasive brain stimulation techniques, particularly transcranial magnetic or direct current stimulation, are used to ameliorate ET. Their non-invasiveness, along with their side effects profile, makes them an appealing treatment option. In addition, peripheral stimulation has been applied in the same perspective. Hence, the aim of the present review is to shed light on the emergent use of non-invasive central and peripheral stimulation techniques in this interesting context.
Collapse
Affiliation(s)
- Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil Créteil, France ; Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris Créteil, France ; Neurology Division, University Medical Center Rizk Hospital Beirut, Lebanon
| |
Collapse
|
41
|
TEKRIWAL A, BALTUCH G. Deep Brain Stimulation: Expanding Applications. Neurol Med Chir (Tokyo) 2015; 55:861-77. [PMID: 26466888 PMCID: PMC4686449 DOI: 10.2176/nmc.ra.2015-0172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
For over two decades, deep brain stimulation (DBS) has shown significant efficacy in treatment for refractory cases of dyskinesia, specifically in cases of Parkinson's disease and dystonia. DBS offers potential alleviation from symptoms through a well-tolerated procedure that allows personalized modulation of targeted neuroanatomical regions and related circuitries. For clinicians contending with how to provide patients with meaningful alleviation from often debilitating intractable disorders, DBSs titratability and reversibility make it an attractive treatment option for indications ranging from traumatic brain injury to progressive epileptic supra-synchrony. The expansion of our collective knowledge of pathologic brain circuitries, as well as advances in imaging capabilities, electrophysiology techniques, and material sciences have contributed to the expanding application of DBS. This review will examine the potential efficacy of DBS for neurologic and psychiatric disorders currently under clinical investigation and will summarize findings from recent animal models.
Collapse
Affiliation(s)
- Anand TEKRIWAL
- University of Pennsylvania, Department of Neurosurgery, Philadelphia, USA
- University of Colorado School of Medicine and Graduate School of Neuroscience, MSTP, Colorado, USA (current affiliation)
| | - Gordon BALTUCH
- University of Pennsylvania, Department of Neurosurgery, Philadelphia, USA
| |
Collapse
|
42
|
Udupa K, Chen R. The mechanisms of action of deep brain stimulation and ideas for the future development. Prog Neurobiol 2015; 133:27-49. [DOI: 10.1016/j.pneurobio.2015.08.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 08/04/2015] [Accepted: 08/15/2015] [Indexed: 12/19/2022]
|
43
|
Barbey A, Bloch J, Vingerhoets FJG. DBS in Dystonia and Other Hyperkinetic Movement Disorders. Curr Treat Options Neurol 2015; 17:373. [PMID: 26257150 DOI: 10.1007/s11940-015-0373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT The diagnosis and appropriate treatment of hyperkinetic movement disorders require a work up of potentially reversible metabolic, infectious and structural disorders as well as side effects of current medication. In pharmacoresistant movement disorders with a disabling impact on quality of life, deep brain stimulation (DBS) should be considered. At different targets, DBS has become an established therapy for Parkinson's disease (GPi-STN), tremor (VIM) and primary dystonia (GPi) with reasonable perioperative risks and side effects, established guidelines and some clinical and radiological predictive factors. In contrast, for other hyperkinetic movement disorders, including secondary dystonia, Gilles de la Tourette, chorea and ballism, only few data are available. Definite targets are not well defined, and reported results are of less magnitude than those of the recognized indications. In this expanding therapeutical field without worked out recommendations, an individual approach is needed with DBS indication assessment only after rigorous multidisciplinary scrutiny, restricted to expert centres.
Collapse
Affiliation(s)
- A Barbey
- Department of Neurology, Centre Hospitalier Universitaire Vaudois (CHUV), Rue de Bugnon 21, CH-1011, Lausanne, Switzerland
| | | | | |
Collapse
|
44
|
Kestenbaum M, Ford B, Louis ED. Estimating the Proportion of Essential Tremor and Parkinson's Disease Patients Undergoing Deep Brain Stimulation Surgery: Five-Year Data From Columbia University Medical Center (2009-2014). Mov Disord Clin Pract 2015; 2:384-387. [PMID: 28845438 DOI: 10.1002/mdc3.12185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The aim of this study was to estimate, at a tertiary referral center, the proportion of essential tremor (ET) and Parkinson's disease (PD) patients who underwent DBS surgery. BACKGROUND DBS surgery is an important treatment for ET and PD. Surprisingly, there are no published data on the precise proportion of such patients who are referred for this procedure. METHODS Using the computerized billing database at the Center for Parkinson's Disease and Other Movement Disorders, Columbia University Medical Center, we searched for patients who received the diagnostic codes 333.1 (tremor) and 332.0 (PD) and who were followed by a doctor at the center during the 5-year period from 2009 to 2014. The number of patients who underwent DBS surgery for these diagnoses during this time period was also determined. RESULTS Seventy-seven patients with these diagnoses (52 PD, 14 ET, and 11 ET + PD) who were followed at the center underwent DBS surgery during this time period. The proportion of ET patients who underwent DBS surgery was 2.90% (95% confidence interval [CI]: 1.78-4.02), and for PD this was 1.38% (95% CI: 1.04-1.72). The difference was significant (P < 0.001). CONCLUSIONS At a tertiary-referral center, 1 in 34 ET patients and 1 in 72 PD patients underwent DBS surgery. Similar studies from other major centers would be of additional value. These data are likely to have utility when planning health care services for patients with these diagnoses.
Collapse
Affiliation(s)
- Meir Kestenbaum
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Blair Ford
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
45
|
Fernández-Irigoyen J, Zelaya MV, Perez-Valderrama E, Santamaría E. New insights into the human brain proteome: Protein expression profiling of deep brain stimulation target areas. J Proteomics 2015; 127:395-405. [PMID: 25845585 DOI: 10.1016/j.jprot.2015.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/09/2015] [Accepted: 03/19/2015] [Indexed: 12/30/2022]
Abstract
UNLABELLED Deep brain stimulation (DBS) is a neurosurgical procedure that provides therapeutic benefits for movement and affective disorders. The nucleus basalis of Meynert (NBM) and substantia nigra (SN) are considered target areas to apply DBS. Even though the degeneration of NBM and SN underlies the cognitive decline observed in neurological diseases, the protein knowledge derived from both areas is scarce. We have characterized the proteome present in both subcortical brain areas using the Triple TOF 5600 mass spectrometer, identifying 2775 and 3469 proteoforms in NBM and SN respectively. Data mining of MS-generated proteomic data have revealed that: i) 675 proteins tend to localize to synaptic ending, ii) 61% of the global dataset is also present in human CSF and/or plasma, and iii) 894 proteins have not been previously identified in healthy brain by MS. The correlation of NBM and SN proteomic expression profiles with human brain transcriptome data available at Allen Brain Atlas has revealed protein evidence for 250 genes considered with brain-wide expression and 112 genes with region-specific expression in human brain. In addition, protein datasets have been classified according to their chromosomal origin, increasing the current proteome coverage in healthy human brain. BIOLOGICAL SIGNIFICANCE The nucleus basalis of Meynert and substantia nigra are brain areas of clinical interest to apply the deep brain stimulation (DBS) technology in neurosurgery. Our proteomic characterization has revealed 675 proteins involved in the regulation of synaptic transmission, electrical machinery, and neurotransmitter release in both DBS target areas. Moreover, 2599 identified proteins present capacity to be secreted to the CSF and plasma. Our data contribute to a further step towards the characterization of the anatomical atlas of the human brain proteome, detecting 652 proteins that are common between different basal ganglia structures. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - María Victoria Zelaya
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain; Neurological Tissue Bank, Navarrabiomed, Fundación Miguel Servet, 31008 Pamplona, Spain
| | - Estela Perez-Valderrama
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Enrique Santamaría
- ProteoRed-ISCIII, Proteomics Unit, Clinical Neuroproteomics Group, Navarrabiomed, Fundación Miguel Servet, Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain.
| |
Collapse
|
46
|
Arsenault D, Drouin-Ouellet J, Saint-Pierre M, Petrou P, Dubois M, Kriz J, Barker RA, Cicchetti A, Cicchetti F. A novel combinational approach of microstimulation and bioluminescence imaging to study the mechanisms of action of cerebral electrical stimulation in mice. J Physiol 2015; 593:2257-78. [PMID: 25653107 DOI: 10.1113/jphysiol.2014.287243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
Deep brain stimulation (DBS) is used to treat a number of neurological conditions and is currently being tested to intervene in neuropsychiatric conditions. However, a better understanding of how it works would ensure that side effects could be minimized and benefits optimized. We have thus developed a unique device to perform brain stimulation (BS) in mice and to address fundamental issues related to this methodology in the pre-clinical setting. This new microstimulator prototype was specifically designed to allow simultaneous live bioluminescence imaging of the mouse brain, allowing real time assessment of the impact of stimulation on cerebral tissue. We validated the authenticity of this tool in vivo by analysing the expression of toll-like receptor 2 (TLR2), corresponding to the microglial response, in the stimulated brain regions of TLR2-fluc-GFP transgenic mice, which we further corroborated with post-mortem analyses in these animals as well as in human brains of patients who underwent DBS to treat their Parkinson's disease. In the present study, we report on the development of the first BS device that allows for simultaneous live in vivo imaging in mice. This tool opens up a whole new range of possibilities that allow a better understanding of BS and how to optimize its effects through its use in murine models of disease.
Collapse
Affiliation(s)
- Dany Arsenault
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Janelle Drouin-Ouellet
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Martine Saint-Pierre
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Petros Petrou
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Marilyn Dubois
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Jasna Kriz
- Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada.,Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Antonio Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec (CHUQ), Axe Neurosciences, Québec, QC, Canada.,Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
47
|
Paffi A, Camera F, Apollonio F, d'Inzeo G, Liberti M. Numerical characterization of intraoperative and chronic electrodes in deep brain stimulation. Front Comput Neurosci 2015; 9:2. [PMID: 25745397 PMCID: PMC4333814 DOI: 10.3389/fncom.2015.00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022] Open
Abstract
An intraoperative electrode (microelectrode) is used in the deep brain stimulation (DBS) technique to pinpoint the brain target and to choose the best parameters for the electrical stimulus. However, when the intraoperative electrode is replaced with the chronic one (macroelectrode), the observed effects do not always coincide with predictions. To investigate the causes of such discrepancies, a 3D model of the basal ganglia has been considered and realistic models of both intraoperative and chronic electrodes have been developed and numerically solved. Results of simulations of the electric potential (V) and the activating function (AF) along neuronal fibers show that the different geometries and sizes of the two electrodes do not change the distributions and polarities of these functions, but rather the amplitudes. This effect is similar to the one produced by the presence of different tissue layers (edema or glial tissue) in the peri-electrode space. Conversely, an inaccurate positioning of the chronic electrode with respect to the intraoperative one (electric centers not coincident) may induce a completely different electric stimulation in some groups of fibers.
Collapse
Affiliation(s)
- Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Francesca Camera
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Francesca Apollonio
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Guglielmo d'Inzeo
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| | - Micaela Liberti
- Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome Rome, Italy
| |
Collapse
|
48
|
|
49
|
Fuller CJ, Misbahuddin A, Prezerakos G, Haliasos N, Low H. Comment on the Article by Ledermann et al. Entitled ‘Effects of Cerebellothalamic Tractotomy on Cognitive and Emotional Functioning in Essential Tremor: A Preliminary Study in 5 Essential Tremor Patients'. Stereotact Funct Neurosurg 2015; 93:378-9. [DOI: 10.1159/000440728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
|
50
|
Wei XF, Iyengar N, DeMaria AH. Iterative electrodes increase neural recruitment for deep brain stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:3419-3422. [PMID: 26737027 DOI: 10.1109/embc.2015.7319127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Deep brain stimulators require surgical replacement when primary cell batteries are depleted. We designed novel electrode contact geometries based on the principle of iterative element addition as a method of increasing perimeter. Our hypothesis was that these novel, high-perimeter designs would increase surface current density variation and neuronal activation, thus improving stimulation efficiency by decreasing power requirement. Finite element models of iterative electrodes displayed greater surface current density variations on the electrode surface. Subsequent analysis of their activation efficiency when 100 neurons were randomly positioned either parallel or perpendicular to the electrode yielded higher stimulation efficiencies in response to a monophasic cathodic voltage pulse with a pulse width of 100 μs. Recruitment curves showing the percentage of activated axons as a function of stimulation intensity yielded a ~8% and ~24% reduction in threshold voltage and a ~2% and ~28% reduction in power consumption when nerve fibers were oriented parallel and perpendicular to the electrode, respectively. This heightened efficiency would reduce the frequency of surgical replacements of depleted stimulators, as well as induce fewer side effects associate with high voltage requirement for therapeutic stimulation.
Collapse
|