1
|
Foster T, Lim P, Ionescu CM, Wagle SR, Kovacevic B, Mooranian A, Al-Salami H. Exploring delivery systems for targeted nanotechnology-based gene therapy in the inner ear. Ther Deliv 2024; 15:801-818. [PMID: 39324734 PMCID: PMC11457609 DOI: 10.1080/20415990.2024.2389032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/02/2024] [Indexed: 09/27/2024] Open
Abstract
Hearing loss places a significant burden on our aging population. However, there has only been limited progress in developing therapeutic techniques to effectively mediate this condition. This review will outline several of the most commonly utilized practices for the treatment of sensorineural hearing loss before exploring more novel techniques currently being investigated via both in vitro and in vivo research. This review will place particular emphasis on novel gene-delivery technologies. Primarily, it will focus on techniques used to deliver genes that have been shown to encourage the proliferation and differentiation of sensory cells within the inner ear and how these technologies may be translated into providing clinically useful results for patients.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, University of Western Australia, Perth, 6000, Western Australia, Australia
| |
Collapse
|
2
|
Low-dose nano-gel incorporated with bile acids enhanced pharmacology of surgical implants. Ther Deliv 2023; 14:17-29. [PMID: 36919692 DOI: 10.4155/tde-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Aim: Major challenges to islet transplantation in Type 1 diabetes include host-inflammation, which results in failure to maintain survival and functions of transplanted islets. Therefore, this study investigated the applications of encapsulating the bile acid ursodeoxycholic acid (UDCA) with transplanted islets within improved nano-gel systems for Type 1 diabetes treatment. Materials & methods: Islets were harvested from healthy mice, encapsulated using UDCA-nano gel and transplanted into the diabetic mice, while the control group was transplanted encapsulated islets without UDCA. The two groups' survival plot, blood glucose, and inflammation and bile acid profiles were analyzed. Results & conclusion: UDCA-nano gel enhanced survival, glycemia and normalized bile acids' profile, which suggests improved islets functions and potential adjunct treatment for insulin therapy.
Collapse
|
3
|
Pharmacological Dose-Effect Profiles of Various Concentrations of Humanised Primary Bile Acid in Encapsulated Cells. NANOMATERIALS 2022; 12:nano12040647. [PMID: 35214975 PMCID: PMC8879575 DOI: 10.3390/nano12040647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/08/2023]
Abstract
Bile acids (BA)s are known surfactants and well-documented to play a major role in food digestion and absorption. Recently, potential endocrinological and formulation-stabilisation effects of BAs have been explored and their pharmacological effects on supporting cell survival and functions have gained wide interest. Hence, this study aimed to explore the hyper-glycaemic dependent dose-effect of the BA chenodeoxycholic acid (CDCA) when encapsulated with pancreatic β-cells, allowing assessment of CDCA's impacts when encapsulated. Four different concentrations of the BA were prepared, and viable cells were encapsulated and incubated for 2 days. Multiple analyses were carried out including confocal imaging, glucose-induced cellular mitochondrial viability indices, insulin production, inflammatory biomarker analyses and cellular bioenergetics measurements. There was a significant dose-effect with different concentrations of the BA, affecting cellular viability and antioxidant activities, cell functions and insulin release, inflammatory biomarkers, and cellular-bioenergetics at different oxidative stress levels. The results demonstrate that, when encapsulated, the BA CDCA exerts positive pharmacological effects at the cellular level, and such effects are concentration dependent.
Collapse
|
4
|
Taurine Grafted Micro-Implants Improved Functions without Direct Dependency between Interleukin-6 and the Bile Acid Lithocholic Acid in Plasma. Biomedicines 2022; 10:biomedicines10010111. [PMID: 35052790 PMCID: PMC8772949 DOI: 10.3390/biomedicines10010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/27/2023] Open
Abstract
A recent study showed an association between diabetes development and the bile acid lithocholic acid (LCA), while another study demonstrated positive biological effects of the conjugated bile acid, taurocholic acid (TCA), on pancreatic cells. Thus, this study aimed to encapsulate TCA with primary islets (graft) and study the biological effects of the graft, post-transplantation, in diabetic mice, including effects on LCA concentrations. Sixteen mature adult mice were made diabetic and randomly divided into two equal groups, control and test (transplanted encapsulated islets without or with TCA). Graft pharmaceutical features pre-transplantation, and biological effects including on LCA concentrations post-transplantation, were measured. TCA-microcapsules had an oval shape and similar size compared with the control. The treatment group survived longer, showed improved glucose and interleukin-6 concentrations, and lower LCA concentrations in plasma, large intestine, faeces, liver and spleen, compared with control. Results suggest that TCA incorporation with islets encapsulated graft exerted beneficial effects, but there was no direct and significant dependency between concentrations of interleukin-6 and LCA.
Collapse
|
5
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
6
|
Bile acid-permeation enhancement for inner ear cochlear drug - pharmacological uptake: bio-nanotechnologies in chemotherapy-induced hearing loss. Ther Deliv 2021; 12:807-819. [PMID: 34761700 DOI: 10.4155/tde-2021-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ototoxicity is the damage to inner ear sensory epithelia due to exposure to certain medications and chemicals. This occurs when toxins enter the tightly controlled inner ear environment inducing hair cell death, resulting in hearing loss. Recent studies have explored hydrogel-based bio-nanotechnologies and new drug delivery formulations to prevent drug-induced hearing loss, with much attention given to administration of antioxidant drugs. Bile acids have been recognized as promising excipients due to their biocompatibility and unique physiochemical properties. As yet bile acids have not been explored in improving drug delivery to the inner ear despite improving drug stability and delivery in other systems and demonstrating positive biological effects in their own right.
Collapse
|
7
|
Mooranian A, Foster T, Ionescu CM, Carey L, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Johnstone E, Kuthubutheen J, Brown D, Atlas MD, Mikov M, Al-Salami H. The Effects of Primary Unconjugated Bile Acids on Nanoencapsulated Pharmaceutical Formulation of Hydrophilic Drugs: Pharmacological Implications. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:4423-4434. [PMID: 34720580 PMCID: PMC8550211 DOI: 10.2147/dddt.s328526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/13/2023]
Abstract
Introduction In a recent study, in our laboratory, primary unconjugated bile acids, commonly found in humans, chenodeoxycholic acid (CDCA), have been shown to improve stability of nanoencapsulated lipophilic drugs and improve their release profile after oral administration likely via electrokinetic stabilisation. Hence, this study aimed to examine the effects of CDCA on exerting similar effects on hydrophilic drugs. Methods Various CDCA-based formulations were produced for the orally administered hydrophilic drug, metformin. Analyses of these formulations included electrokinetic potentials, topography, drug and CDCA formulation contents, nano size distribution, heat-induced deformation and outer-core expansion indices, release profiles, shell-resistance ratio, and thermal and chemical indices. With the drug’s main target being pancreatic beta-cells, the formulations’ effects on cell viability, functions and inflammatory profiles were also investigated. Results and Conclusions CDCA-based metformin formulations exhibited improved stability and release profiles via thermal, chemical and electrokinetic effects, which were formulation-dependent suggesting potential applications of CDCA in the oral targeted delivery of hydrophilic drugs.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Corina M Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Louise Carey
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Edan Johnstone
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | | | - Daniel Brown
- Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Marcus D Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, WA, Australia.,Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, 6009, WA, Australia
| |
Collapse
|
8
|
Chemotherapy-induced hearing loss: the applications of bio-nanotechnologies and bile acid-based delivery matrices. Ther Deliv 2021; 12:723-737. [PMID: 34697955 DOI: 10.4155/tde-2021-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Advancement in the prevention of chemotherapy-induced hearing loss has proposed new nano-based delivery matrices that can target inner ear regions most damaged by chemotherapy. Chemotherapy agents (e.g., cisplatin) induce increased reactive oxygen species formation in the inner ear that damage sensory hair cells and result in irreversible hearing impairment. Exogenous antioxidants (e.g., Probucol and metformin) have been shown to block the formation of these reactive oxygen species. Delivery of these drugs in effective concentrations remains a challenge. Microencapsulation in combination with drug excipients provides one technique to effectively deliver these drugs. This paper investigates the use of probucol and metformin in combination with drug excipients for novel, inner ear, delivery.
Collapse
|
9
|
Polyelectrolytes Formulated with Primary Unconjugated Bile Acid Optimised Pharmacology of Bio-Engineered Implant. Pharmaceutics 2021; 13:pharmaceutics13101713. [PMID: 34684006 PMCID: PMC8538409 DOI: 10.3390/pharmaceutics13101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction. Several studies have shown that different biomaterials and hydrogels comprising various bile acids such as chenodeoxycholic acid (CDCA), as well as excipients such as poly-(styrene)-sulphonate (PSS) and poly-(allyl)-amine (PAA), exhibited positive biological effects on encapsulated viable pancreatic β-cells. Hence, this study aimed to investigate whether incorporating CDCA with PSS and PAA will optimise the functions of encapsulated pancreatic islets post-transplantation in Type 1 diabetes (T1D). Methods. Mice were made T1D, divided into two equal groups, and transplanted with encapsulated islets in PSS-PAA (control) or with CDCA-PSS-PAA (treatment) microcapsules. The effects of transplanted microcapsules on blood glucose, inflammation and the bile acid profile were measured post-transplantation. Results and Conclusion. Compared with control, the treatment group showed better survival rate, improved glycaemic control, and lower inflammatory profile, illustrated by ↓ interleukin 1-β, interleukin-6, interleukin-12, and tumour-necrosis factor-α, and ↓ levels of the bile acid, as well as lithocholic acid in the plasma, liver, large intestine and faeces. The results suggest that CDCA incorporation with PSS-PAA microcapsules exerted beneficial effects on encapsulated islets and resulted in enhanced diabetes treatment, post-transplantation, at the local and systemic levels.
Collapse
|
10
|
Chenodeoxycholic Acid Pharmacology in Biotechnology and Transplantable Pharmaceutical Applications for Tissue Delivery: An Acute Preclinical Study. Cells 2021; 10:cells10092437. [PMID: 34572086 PMCID: PMC8472107 DOI: 10.3390/cells10092437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Primary bile acids (PBAs) are produced and released into human gut as a result of cholesterol catabolism in the liver. A predominant PBA is chenodeoxycholic acid (CDCA), which in a recent study in our laboratory, showed significant excipient-stabilizing effects on microcapsules carrying insulinoma β-cells, in vitro, resulting in improved cell functions and insulin release, in the hyperglycemic state. Hence, this study aimed to investigate the applications of CDCA in bio-encapsulation and transplantation of primary healthy viable islets, preclinically, in type 1 diabetes. METHODS Healthy islets were harvested from balb/c mice, encapsulated in CDCA microcapsules, and transplanted into the epididymal tissues of 6 syngeneic diabetic mice, post diabetes confirmation. Pre-transplantation, the microcapsules' morphology, size, CDCA-deep layer distribution, and physical features such as swelling ratio and mechanical strength were analyzed. Post-transplantation, animals' weight, bile acids', and proinflammatory biomarkers' concentrations were analyzed. The control group was diabetic mice that were transplanted encapsulated islets (without PBA). RESULTS AND CONCLUSION Islet encapsulation by PBA microcapsules did not compromise the microcapsules' morphology or features. Furthermore, the PBA-graft performed better in terms of glycemic control and resulted in modulation of the bile acid profile in the brain. This is suggestive that the improved glycemic control was mediated via brain-related effects. However, the improvement in graft insulin delivery and glycemic control was short-term.
Collapse
|
11
|
Cai ZY, Fu MD, Liu K, Duan XC. Therapeutic effect of Keap1-Nrf2-ARE pathway-related drugs on age-related eye diseases through anti-oxidative stress. Int J Ophthalmol 2021; 14:1260-1273. [PMID: 34414093 DOI: 10.18240/ijo.2021.08.19] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related eye diseases, including cataract, glaucoma, diabetic retinopathy (DR), and age-related macular degeneration (AMD), are the leading causes of vision loss in the world. Several studies have shown that the occurrence and development of these diseases have an important relationship with oxidative stress in the eye. The Keap1-Nrf2-ARE pathway is a classical pathway that resists oxidative stress and inflammation in the body. This pathway is also active in the development of age-related eye diseases. A variety of drugs have been shown to treat age-related eye diseases through the Keap1-Nrf2-ARE (Kelch-like ECH-Associating protein 1- nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway. This review describes the role of oxidative stress in the development of age-related eye diseases, the function and regulation of the Keap1-Nrf2-ARE pathway, and the therapeutic effects of drugs associated with this pathway on age-related eye diseases.
Collapse
Affiliation(s)
- Zi-Yan Cai
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Meng-Die Fu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Ke Liu
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Xuan-Chu Duan
- Department of Ophthalmology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China.,Department of Ophthalmology, Changsha Aier Eye Hospital, Changsha 410011, Hunan Province, China
| |
Collapse
|
12
|
Mooranian A, Foster T, Ionescu CM, Walker D, Jones M, Wagle SR, Kovacevic B, Chester J, Johnston E, Wong E, Atlas MD, Mikov M, Al-Salami H. Enhanced Bilosomal Properties Resulted in Optimum Pharmacological Effects by Increased Acidification Pathways. Pharmaceutics 2021; 13:pharmaceutics13081184. [PMID: 34452145 PMCID: PMC8398365 DOI: 10.3390/pharmaceutics13081184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Recent studies in our laboratory have shown that some bile acids, such as chenodeoxycholic acid (CDCA), can exert cellular protective effects when encapsulated with viable β-cells via anti-inflammatory and anti-oxidative stress mechanisms. However, to explore their full potential, formulating such bile acids (that are intrinsically lipophilic) can be challenging, particularly if larger doses are required for optimal pharmacological effects. One promising approach is the development of nano gels. Accordingly, this study aimed to examine biological effects of various concentrations of CDCA using various solubilising nano gel systems on encapsulated β-cells. METHODS Using our established cellular encapsulation system, the Ionic Gelation Vibrational Jet Flow technology, a wide range of CDCA β-cell capsules were produced and examined for morphological, biological, and inflammatory profiles. RESULTS AND CONCLUSION Capsules' morphology and topographic characteristics remained similar, regardless of CDCA or nano gel concentrations. The best pharmacological, anti-inflammatory, and cellular respiration, metabolism, and energy production effects were observed at high CDCA and nano gel concentrations, suggesting dose-dependent cellular protective and positive effects of CDCA when incorporated with high loading nano gel.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Corina M. Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Elaine Wong
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.M.); (T.F.); (C.M.I.); (D.W.); (M.J.); (S.R.W.); (B.K.); (J.C.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia; (E.W.); (M.D.A.)
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
13
|
A Review on Recent Advancement on Age-Related Hearing Loss: The Applications of Nanotechnology, Drug Pharmacology, and Biotechnology. Pharmaceutics 2021; 13:pharmaceutics13071041. [PMID: 34371732 PMCID: PMC8309044 DOI: 10.3390/pharmaceutics13071041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022] Open
Abstract
Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.
Collapse
|