1
|
Motor memory consolidation in children: The role of awareness and sleep on offline general and sequence-specific learning. BIOMEDICAL HUMAN KINETICS 2022. [DOI: 10.2478/bhk-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Study aim: The purpose of this study was to investigate the role of sleep and awareness on consolidation of general and Sequence-Specific learning in children.
Material and methods: Male participants (n = 48, 10 to 12 years old) were assigned to one of four groups based on awareness and sleep. Acquisition phase took place in the morning (wake groups, 8 ± am) or in the evening (sleep groups, 8 ± pm) followed by a 12 hours retention interval and a subsequent delayed retention test (1 week). Children in the explicit groups were informed about the presence of the sequence, while in the implicit groups were not informed about it. For data analysis in consolidation of general sequence learning and Sequence-Specific Consolidation phases, 2 × 2 × 2 and 2 × 2 × 3 ANOVA with repeated measures on block tests were used respectively.
Results: The data provides evidence of offline enhancement of general motor learning after 12 hours which was dependent on sleep and awareness. Moreover, the information persistence after 1-week was significant only in sleep groups. The results also indicated that consolidation of sequence-specific learning was only observed after 12 hours in element duration and it was related to sleep and awareness.
Conclusions: The results revealed that sleep wasn’t only an essential factor in enhancement of off-line sequence learning task after 12 hours in children, but performance of the children was dependent on awareness and sleep.
Collapse
|
2
|
Espenhahn S, Rossiter HE, van Wijk BCM, Redman N, Rondina JM, Diedrichsen J, Ward NS. Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. Brain Commun 2020; 2:fcaa161. [PMID: 33215085 PMCID: PMC7660041 DOI: 10.1093/braincomms/fcaa161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/16/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15–30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance. Eighteen well-recovered chronic stroke survivors (mean age 64 ± 8 years, range: 50–74 years) and 20 age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 h later). Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Svenja Espenhahn
- Correspondence to:Svenja Espenhahn, PhD, Department of Radiology, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, Canada AB T2N 4N1 E-mail:
| | - Holly E Rossiter
- School of Psychology, Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff CF24 4HQ, UK
| | - Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, Amsterdam 1018 WT, The Netherlands
| | - Nell Redman
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jane M Rondina
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Joern Diedrichsen
- Department of Computer Science, Department of Statistical and Actuarial Sciences, Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nick S Ward
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
3
|
Espenhahn S, van Wijk BCM, Rossiter HE, de Berker AO, Redman ND, Rondina J, Diedrichsen J, Ward NS. Cortical beta oscillations are associated with motor performance following visuomotor learning. Neuroimage 2019; 195:340-353. [PMID: 30954709 PMCID: PMC6547051 DOI: 10.1016/j.neuroimage.2019.03.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/26/2019] [Accepted: 03/31/2019] [Indexed: 01/06/2023] Open
Abstract
People vary in their capacity to learn and retain new motor skills. Although the relationship between neuronal oscillations in the beta frequency range (15-30 Hz) and motor behaviour is well established, the electrophysiological mechanisms underlying individual differences in motor learning are incompletely understood. Here, we investigated the degree to which measures of resting and movement-related beta power from sensorimotor cortex account for inter-individual differences in motor learning behaviour in the young and elderly. Twenty young (18-30 years) and twenty elderly (62-77 years) healthy adults were trained on a novel wrist flexion/extension tracking task and subsequently retested at two different time points (45-60 min and 24 h after initial training). Scalp EEG was recorded during a separate simple motor task before each training and retest session. Although short-term motor learning was comparable between young and elderly individuals, there was considerable variability within groups with subsequent analysis aiming to find the predictors of this variability. As expected, performance during the training phase was the best predictor of performance at later time points. However, regression analysis revealed that movement-related beta activity significantly explained additional variance in individual performance levels 45-60 min, but not 24 h after initial training. In the context of disease, these findings suggest that measurements of beta-band activity may offer novel targets for therapeutic interventions designed to promote rehabilitative outcomes.
Collapse
Affiliation(s)
- Svenja Espenhahn
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK; Department of Radiology, Cumming School of Medicine, University of Calgary, 2500, University Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Bernadette C M van Wijk
- Integrative Model-based Cognitive Neuroscience Research Unit, Department of Psychology, University of Amsterdam, Postbus 15926, 1001, NK, Amsterdam, the Netherlands; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, WC1N 3BG, London, UK
| | - Holly E Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, CF24 4HQ, Cardiff, UK
| | - Archy O de Berker
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK; Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, WC1N 3BG, London, UK
| | - Nell D Redman
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK
| | - Jane Rondina
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK
| | - Joern Diedrichsen
- Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Nick S Ward
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, 33 Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
4
|
Backhaus W, Braass H, Gerloff C, Hummel FC. Can Daytime Napping Assist the Process of Skills Acquisition After Stroke? Front Neurol 2018; 9:1002. [PMID: 30524365 PMCID: PMC6262055 DOI: 10.3389/fneur.2018.01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/06/2018] [Indexed: 01/14/2023] Open
Abstract
Acquisition and reacquisition of skills is a main pillar of functional recovery after stroke. Nighttime sleep has a positive influence on motor learning in healthy individuals, whereas the effect of daytime sleep on neuro-rehabilitative training and relearning of the trained skills is often neglected. The aim of this study was to investigate the relationship between daytime sleep (napping) and the ability to learn a new visuomotor task in chronic stroke patients. The main hypothesis was that sleep enhances motor memory consolidation after training resulting in better motor performance after a period of daytime sleep. Thirty stroke survivors completed the study. They were randomized to one of three different conditions (i) wakeful resting, (ii) short nap (10-20 min), or (iii) long nap (50-80 min). All individuals trained the task with the contralesional, stroke-impaired hand, behavioral evaluation was performed after the break time (wake, nap), and 24 h later. Patients demonstrated a significant task-related behavioral improvement throughout the training. In contrast to the main hypothesis, there was no evidence for sleep-dependent motor consolidation early after the initial, diurnal break, or after an additional full night of sleep. In a secondary analysis, the performance changes of stroke survivors were compared with those of a group of healthy older adults who performed the identical task within the same experimental setup with their non-dominant hand. Performance levels were comparable between both cohorts at all time points. Stroke-related difficulties in motor control did not impact on the degree of performance improvement through training and daytime sleep did not impact on the behavioral gains in the two groups. In summary, the current study indicates that one-time daytime sleep after motor training does not influence behavioral gains.
Collapse
Affiliation(s)
- Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Hanna Braass
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedhelm C. Hummel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Brain Mind Institute and Center for Neuroprosthetics, Swiss Federal Institute of Technology Valais (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
- Clinical Neuroscience, Medical School University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Yordanova J, Kolev V, Bruns E, Kirov R, Verleger R. Sleep Spindles in the Right Hemisphere Support Awareness of Regularities and Reflect Pre-Sleep Activations. Sleep 2018; 40:4104557. [PMID: 28958008 PMCID: PMC5806558 DOI: 10.1093/sleep/zsx151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Study Objectives The present study explored the sleep mechanisms which may support awareness of hidden regularities. Methods Before sleep, 53 participants learned implicitly a lateralized variant of the serial response-time task in order to localize sensorimotor encoding either in the left or right hemisphere and induce implicit regularity representations. Electroencephalographic (EEG) activity was recorded at multiple electrodes during both task performance and sleep, searching for lateralized traces of the preceding activity during learning. Sleep EEG analysis focused on region-specific slow (9-12 Hz) and fast (13-16 Hz) sleep spindles during nonrapid eye movement sleep. Results Fast spindle activity at those motor regions that were activated during learning increased with the amount of postsleep awareness. Independently of side of learning, spindle activity at right frontal and fronto-central regions was involved: there, fast spindles increased with the transformation of sequence knowledge from implicit before sleep to explicit after sleep, and slow spindles correlated with individual abilities of gaining awareness. These local modulations of sleep spindles corresponded to regions with greater presleep activation in participants with postsleep explicit knowledge. Conclusions Sleep spindle mechanisms are related to explicit awareness (1) by tracing the activation of motor cortical and right-hemisphere regions which had stronger involvement already during learning and (2) by recruitment of individually consolidated processing modules in the right hemisphere. The integration of different sleep spindle mechanisms with functional states during wake collectively supports the gain of awareness of previously experienced regularities, with a special role for the right hemisphere.
Collapse
Affiliation(s)
- Juliana Yordanova
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Vasil Kolev
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Eike Bruns
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany
| | - Roumen Kirov
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Rolf Verleger
- Department of Neurology, University of Lübeck, 23562 Lübeck, Germany.,Institute of Psychology II, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
6
|
Yordanova J, Kirov R, Kolev V. Increased Performance Variability as a Marker of Implicit/Explicit Interactions in Knowledge Awareness. Front Psychol 2015; 6:1957. [PMID: 26779047 PMCID: PMC4688353 DOI: 10.3389/fpsyg.2015.01957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/06/2015] [Indexed: 11/28/2022] Open
Abstract
Only some, but not all, individuals who practice tasks with dual structure, overt and covert, are able to comprehend consciously a hidden regularity. The formation of implicit representations of regularity has been proposed to be critical for subsequent awareness. However, explicit knowledge also has been predicted by the activation of executive control systems during task encoding. The present study analyzed performance patterns in participants who could comprehend task regularity and those who could not at delayed recall. Specifically, the role of practice-based knowledge of sequence for individual awareness was focused on. A lateralized variant of the visual serial response time task (SRTT) comprising structured and random blocks was practiced in implicit conditions by 109 participants before and after 10-h retention, with explicit knowledge about covert sequence tested thereafter. Sequence learning was quantified using the normalized difference between response speed in regular and subsequent random blocks. Patterns of performance dynamics were evaluated using response speed, response variability, and error rate. Major results demonstrate that (1) All participants who became aware of the sequence (solvers), gained practice-based sequence knowledge at learning or after retention, (2) Such knowledge also was accumulated during learning by participants who remained fully unaware about covert task structure, (3) Only in explicit solvers, however, was sequence-specific learning accompanied by a prominent increase in performance variability. (4) Specific features and dynamics of performance patterns distinguished different cognitive modes of SRTT processing, each of which supported subsequent knowledge awareness. It is concluded that a behavioral precursor of sequence awareness is the combination of speeded sequence processing and increased performance variability, pointing to an interaction between implicit and explicit processing systems. These results may contribute to refine the evaluation of online and offline learning of tasks with dual structure, and to extend understanding of increased behavioral variability in both normal and pathological conditions.
Collapse
Affiliation(s)
- Juliana Yordanova
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of Science Sofia, Bulgaria
| | - Roumen Kirov
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of Science Sofia, Bulgaria
| | - Vasil Kolev
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of Science Sofia, Bulgaria
| |
Collapse
|
7
|
Gudberg C, Johansen-Berg H. Sleep and Motor Learning: Implications for Physical Rehabilitation After Stroke. Front Neurol 2015; 6:241. [PMID: 26635718 PMCID: PMC4656813 DOI: 10.3389/fneur.2015.00241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022] Open
Abstract
Sleep is essential for healthy brain function and plasticity underlying learning and memory. In the context of physical impairment such as following a stroke, sleep may be particularly important for supporting critical recovery of motor function through similar processes of reorganization in the brain. Despite a link between stroke and poor sleep, current approaches to rehabilitative care often neglect the importance of sleep in clinical assessment and treatment. This review assimilates current evidence on the role of sleep in motor learning, with a focus on the implications for physical rehabilitation after stroke. We further outline practical considerations for integrating sleep assessment as a vital part of clinical care.
Collapse
Affiliation(s)
- Christel Gudberg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital , Oxford , UK ; Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Sir William Dunn School of Pathology , Oxford , UK
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital , Oxford , UK
| |
Collapse
|
8
|
Kirov R, Kolev V, Verleger R, Yordanova J. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task. Front Psychol 2015; 6:1354. [PMID: 26441730 PMCID: PMC4561346 DOI: 10.3389/fpsyg.2015.01354] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT) in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM-REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness.
Collapse
Affiliation(s)
- Roumen Kirov
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
| | - Vasil Kolev
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
- Department of Neurology, University of LübeckLübeck, Germany
| | - Rolf Verleger
- Department of Neurology, University of LübeckLübeck, Germany
- Institute of Psychology II, University of LübeckLübeck, Germany
| | - Juliana Yordanova
- Cognitive Psychophysiology, Institute of Neurobiology, Bulgarian Academy of SciencesSofia, Bulgaria
- Department of Neurology, University of LübeckLübeck, Germany
| |
Collapse
|