1
|
Du Y, Wang Y, Li Y, Emu Q, Zhu J, Lin Y. miR-214-5p Regulating Differentiation of Intramuscular Preadipocytes in Goats via Targeting KLF12. Front Genet 2022; 12:748629. [PMID: 35003206 PMCID: PMC8730364 DOI: 10.3389/fgene.2021.748629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Intramuscular fat (i.m.) is an adipose tissue that is deposited between muscle bundles. An important type of post-transcriptional regulatory factor, miRNAs, has been observed as an important regulator that can regulate gene expression and cell differentiation through specific binding with target genes, which is the pivotal way determining intramuscular fat deposition. Thus, this study intends to use RT-PCR, cell culture, liposome transfection, real-time fluorescent quantitative PCR (qPCR), dual luciferase reporter systems, and other biological methods clarifying the possible mechanisms on goat intramuscular preadipocyte differentiation that is regulated by miR-214-5p. Ultimately, our results showed that the expression level of miR-214-5p peaked at 48 h after the goat intramuscular preadipocytes were induced for adipogenesis. Furthermore, after inhibition of the expression of miR-214-5p, the accumulation of lipid droplets and adipocyte differentiation in goat intramuscular adipocytes were promoted by the way of up-regulation of the expression level of lipoprotein lipase (LPL) (p < 0.05) and peroxisome proliferator-activated receptor gamma (PPARγ) (p < 0.01) but inhibited the expression of hormone-sensitive lipase (HSL) (p < 0.01). Subsequently, our study confirmed that Krüppel-like factor 12 (KLF12) was the target gene of miR-214-5p. Inhibition of the expression of KLF12 promoted adipocyte differentiation and lipid accumulation by upregulation of the expression of LPL and CCAAT/enhancer binding protein (C/EBPα) (p < 0.01). Overall, these results indicated that miR-214-5p and its target gene KLF12 were negative regulators in progression of goat preadipocyte differentiation. Our research results provided an experimental basis for finally revealing the mechanism of miR-214-5p in adipocytes.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Scienceand Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Scienceand Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Quzhe Emu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China.,Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu, China.,College of Animal Scienceand Veterinary Medicine, Southwest Minzu University, Chengdu, China
| |
Collapse
|
2
|
MiR-181a-5p Regulates NIS Expression in Papillary Thyroid Carcinoma. Int J Mol Sci 2021; 22:ijms22116067. [PMID: 34199867 PMCID: PMC8200107 DOI: 10.3390/ijms22116067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
NIS is a potent iodide transporter encoded by the SLC5A5 gene. Its expression is reduced in papillary thyroid carcinoma (PTC). In this study we analyzed the impact of miR-181a-5p on NIS expression in the context of PTC. We used real-time PCR to analyze the expression of SLC5A5 and miR-181a-5p in 49 PTC/normal tissue pairs. Luciferase assays and mutagenesis were performed to confirm direct binding of miR-181a-5p to the 3′UTR of SLC5A5 and identify the binding site. The impact of modulation of miR-181a-5p using appropriate plasmids on endogenous NIS and radioactive iodine accumulation was verified. We confirmed downregulation of SLC5A5 and concomitant upregulation of miR-181a-5p in PTC. Broadly used algorithms did not predict the binding site of miR-181a-5p in 3′UTR of SLC5A5, but we identified and confirmed the binding site through mutagenesis using luciferase assays. In MCF7 and HEK293-flhNIS cell lines, transfection with mir-181a-expressing plasmid decreased endogenous SLC5A5, whereas silencing of miR-181a-5p increased it. We observed similar tendencies in protein expression and radioactive iodine accumulation. This study shows for the first time that miR-181a-5p directly regulates SLC5A5 expression in the context of PTC and may decrease efficacy of radioiodine treatment. Accordingly, miR-181a-5p may serve as an emerging target to enhance the efficacy of radioactive iodine therapy.
Collapse
|
3
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Molecular Changes in Circulating microRNAs' Expression and Oxidative Stress in Adults with Mild Cognitive Impairment: A Biochemical and Molecular Study. Clin Interv Aging 2021; 16:57-70. [PMID: 33447019 PMCID: PMC7802783 DOI: 10.2147/cia.s285689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The release of miRNAs in tissue fluids significantly recommends its use as non-invasive diagnostic biomarkers for the progression and pathogenesis of mild cognitive impairment (MCI) in aged patients. OBJECTIVE The potential role of circulated miRNAs in the pathogenesis of MCI and its association with cellular oxidative stress, apoptosis, and circulated BDNF, Sirtuin 1 (SIRT1), and dipeptidyl peptidase-4 (DPP4) were evaluated in older adults with MCI. METHODS A total of 150 subjects aged 65.4±3.7 years were recruited in this study. The participants were classified into two groups: healthy normal (n=80) and MCI (n=70). Real-time PCR analysis was performed to estimate the relative expression of miRNAs; miR-124a, miR-483-5p, miR-142-3p, and miR-125b, and apoptotic-related genes Bax, Bcl-2, and caspase-3 in the sera of MCI and control subjects. In addition, oxidative stress parameters; MDA, NO, SOD, and CAT; as well as plasma DPP4 activity, BDNF, SIRT1 levels were colorimetrically estimated. RESULTS The levels of miR-124a and miR-483-5p significantly increased and miR-142-3p and miR-125b significantly reduced in the serum of MCI patients compared to controls. The expressed miRNAs significantly correlated with severe cognitive decline, measured by MMSE, MoCA, ADL, and memory scores. The expression of Bax, and caspase-3 apoptotic inducing genes significantly increased and Bcl-2 antiapoptotic gene significantly reduced in MCI subjects compared to controls. In addition, the plasma levels of MDA, NO, and DPP4 activity significantly increased, and the levels of SOD, CAT, BDNF, and SIRT1 significantly reduced in MCI subjects compared to controls. The expressed miRNAs correlated positively with NO, MDA, DPP4 activity, BDNF, and SIRT-1, and negatively with the levels of CAT, SOD, Bcl-2, Bax, and caspase-3 genes. CONCLUSION Circulating miR-124a, miR-483-5p, miR-142-3p, and miR-125b significantly associated with severe cognitive decline, cellular oxidative stress, and apoptosis in patients with MCI. Thus, it could be potential non-invasive biomarkers for the diagnosis of MCI with high diagnostic performance.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
|
5
|
Han N, Song YK, Burckart GJ, Ji E, Kim IW, Oh JM. Regulation of Pharmacogene Expression by microRNA in The Cancer Genome Atlas (TCGA) Research Network. Biomol Ther (Seoul) 2017; 25:482-489. [PMID: 28835003 PMCID: PMC5590791 DOI: 10.4062/biomolther.2017.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 01/19/2017] [Accepted: 06/26/2017] [Indexed: 11/16/2022] Open
Abstract
Individual differences in drug responses are associated with genetic and epigenetic variability of pharmacogene expression. We aimed to identify the relevant miRNAs which regulate pharmacogenes associated with drug responses. The miRNA and mRNA expression profiles derived from data for normal and solid tumor tissues in The Cancer Genome Atlas (TCGA) Research Network. Predicted miRNAs targeted to pharmacogenes were identified using publicly available databases. A total of 95 pharmacogenes were selected from cholangiocarcinoma and colon adenocarcinoma, as well as kidney renal clear cell, liver hepatocellular, and lung squamous cell carcinomas. Through the integration analyses of miRNA and mRNA, 35 miRNAs were found to negatively correlate with mRNA expression levels of 16 pharmacogenes in normal bile duct, liver, colon, and lung tissues (p<0.05). Additionally, 36 miRNAs were related to differential expression of 32 pharmacogene mRNAs in those normal and tumorigenic tissues (p<0.05). These results indicate that changes in expression levels of miRNAs targeted to pharmacogenes in normal and tumor tissues may play a role in determining individual variations in drug response.
Collapse
Affiliation(s)
- Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Republic of Korea
| | - Yun-Kyoung Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Republic of Korea
| | - Gilbert J. Burckart
- Office of Clinical Pharmacology, Office of Translational Sciences, Food and Drug Administration, Silver Spring, Maryland 20993,
USA
| | - Eunhee Ji
- College of Pharmacy, Gacheon University, Incheon 13120,
Republic of Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Republic of Korea
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826,
Republic of Korea
| |
Collapse
|
6
|
Ahluwalia PK, Pandey RK, Sehajpal PK, Prajapati VK. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell. Front Immunol 2017; 8:107. [PMID: 28228760 PMCID: PMC5296369 DOI: 10.3389/fimmu.2017.00107] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/23/2017] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host’s immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz. DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3′-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3′-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but also to promote its survival.
Collapse
Affiliation(s)
- Pankaj Kumar Ahluwalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University , Amritsar, Punjab , India
| | - Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, Rajasthan , India
| | - Prabodh Kumar Sehajpal
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University , Amritsar, Punjab , India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan , Ajmer, Rajasthan , India
| |
Collapse
|
7
|
Ye Y, Li Z, Feng Q, Chen Z, Wu Z, Wang J, Ye X, Zhang D, Liu L, Gao W, Zhang L, Wang B. Downregulation of microRNA-145 may contribute to liver fibrosis in biliary atresia by targeting ADD3. PLoS One 2017; 12:e0180896. [PMID: 28902846 PMCID: PMC5597134 DOI: 10.1371/journal.pone.0180896] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Biliary atresia (BA) is a pediatric liver disease characterized by fibro-obliteration and obstruction of the extrahepatic biliary system, that invariably leads to cirrhosis and even death, if left untreated for extended time. However, its pathology and etiology still remained unknown. In this study, we tested the expression of adducin 3 (ADD3), the gene identified as a susceptibility gene in BA by GWAS, and uncovered its upstream regulatory microRNA in the pathogenesis of BA. METHODS In this study, 14 infants with BA and 14 infants with choledochal cyst (CC) were enrolled as experimental group and control group, respectively. ADD3 and microRNA-145 (miR-145) expression profiles in liver tissues of BA and CC were determined using qPCR. Luciferase reporter assay was performed to verify the direct interaction between miR-145-5p and ADD3 3' Untranslated Regions (3'UTR). The Lentiviral vectors containing miR-145, miR-145-3p inhibitor, miR-145-5p inhibitor, empty vector were transfected into human hepatic stellate cell line (LX-2) to determine the functional effect of miR-145 on ADD3 expression at both mRNA and protein level. RESULTS MiR-145 was shown to be down-regulated in liver tissues of infants with BA compared to CC (p = 0.0267). ADD3, verified as a target of miR-145-5p, was shown to be overexpressed in infants with BA at the mRNA level (p = 0.0118). Transfection of lentiviruses containing miR-145 into LX-2 cells decreased the expression of ADD3 at both mRNA and protein level compared to negative control group, and suppressed the expression of p-Akt at protein level. CONCLUSIONS Our study has shown that overexpressed ADD3 and downregulated miR-145 were detected in BA liver tissues. MiR-145-5p was confirmed to target ADD3 by luciferase reporter assay. The downregulation of miR-145 may contribute to liver fibrosis in BA by upregulating the expression of ADD3.
Collapse
Affiliation(s)
- Yongqin Ye
- Shantou University Medical College, Shantou, Guangdong, China
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Zhihan Li
- Shantou University Medical College, Shantou, Guangdong, China
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Qi Feng
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Zimin Chen
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Zhouguang Wu
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Xiaoshuo Ye
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Dahao Zhang
- Shantou University Medical College, Shantou, Guangdong, China
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Lei Liu
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People’s Hospital, Shenzhen, Guangdong, China
| | - Wei Gao
- Department of Organ Transplatation, Tianjin First Center Hospital, Tianjin, China
- * E-mail: (BW); (WG); (LZ)
| | - Lihui Zhang
- Department of Traditional Chinese Medicine, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (BW); (WG); (LZ)
| | - Bin Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (BW); (WG); (LZ)
| |
Collapse
|
8
|
He Q, Chen Z, Dong Q, Zhang L, Chen D, Patel A, Koya A, Luan X, Cabay RJ, Dai Y, Wang A, Zhou X. MicroRNA-21 regulates prostaglandin E2 signaling pathway by targeting 15-hydroxyprostaglandin dehydrogenase in tongue squamous cell carcinoma. BMC Cancer 2016; 16:685. [PMID: 27561985 PMCID: PMC5000501 DOI: 10.1186/s12885-016-2716-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/11/2016] [Indexed: 12/03/2022] Open
Abstract
Background Oral tongue squamous cell carcinoma (OTSCC) is one of the most aggressive forms of head and neck/oral cancer (HNOC), and is a complex disease with extensive genetic and epigenetic defects, including microRNA deregulation. Identifying the deregulation of microRNA-mRNA regulatory modules (MRMs) is crucial for understanding the role of microRNA in OTSCC. Methods A comprehensive bioinformatics analysis was performed to identify MRMs in HNOC by examining the correlation among differentially expressed microRNA and mRNA profiling datasets and integrating with 12 different sequence-based microRNA target prediction algorithms. Confirmation experiments were performed to further assess the correlation among MRMs using OTSCC patient samples and HNOC cell lines. Functional analyses were performed to validate one of the identified MRMs: miR-21-15-Hydroxyprostaglandin Dehydrogenase (HPGD) regulatory module. Results Our bioinformatics analysis revealed 53 MRMs that are deregulated in HNOC. Four high confidence MRMs were further defined by confirmation experiments using OTSCC patient samples and HNOC cell lines, including miR-21-HPGD regulatory module. HPGD is a known anti-tumorigenic effecter, and it regulates the tumorigenic actions of Prostaglandin E2 (PGE2) by converts PGE2 to its biologically inactive metabolite. Ectopic transfection of miR-21 reduced the expression of HPGD in OTSCC cell lines, and the direct targeting of the miR-21 to the HPGD mRNA was confirmed using a luciferase reporter gene assay. The PGE2-mediated upregulation of miR-21 was also confirmed which suggested the existence of a positive feed-forward loop that involves miR-21, HPGD and PGE2 in OTSCC cells that contribute to tumorigenesis. Conclusions We identified a number of high-confidence MRMs in OTSCC, including miR-21-HPGD regulatory module, which may play an important role in the miR-21-HPGD-PGE2 feed-forward loop that contributes to tumorigenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2716-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianting He
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Qian Dong
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Leitao Zhang
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Oral and Maxillofacial Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Dan Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aditi Patel
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ajay Koya
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Xianghong Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert J Cabay
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA.,UIC Cancer Center, Graduate College, University of Illinois at Chicago, Chicago, IL, USA
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,UIC Cancer Center, Graduate College, University of Illinois at Chicago, Chicago, IL, USA. .,Guanghua School and Research Institute of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Zhou X, Luan X, Chen Z, Francis M, Gopinathan G, Li W, Lu X, Li S, Wu C, Diekwisch TGH. MicroRNA-138 Inhibits Periodontal Progenitor Differentiation under Inflammatory Conditions. J Dent Res 2015; 95:230-7. [PMID: 26518300 DOI: 10.1177/0022034515613043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammatory conditions as they occur during periodontal disease often result in decreased alveolar bone levels and a loss of connective tissue homeostasis. Here we have focused on the effect of microRNA-138 (miR-138) as a potential regulator of periodontal stem cells as they affect homeostasis during inflammatory conditions. Our data indicate that miR-138 was significantly upregulated in our periodontal disease animal model. Interaction of miR-138 with a predicted targeting site on the osteocalcin (OC) promoter resulted in a 3.7-fold reduction of luciferase activity in promoter assays compared with controls; and miR-138 overexpression in periodontal progenitors significantly inhibited OC (3.4-fold), Runx2 (2.8-fold), and collagen I (2.6-fold). Moreover, treatment with inflammatory modulators such as interleukin (IL)-6 and lipopolysaccharide (LPS) resulted in a significant 2.2-fold (IL-6) or 1.9-fold (LPS) increase in miR-138 expression, while OC and Runx2 expression was significantly decreased as a result of treatment with each inflammatory mediator. Further defining the role of miR-138 in the OC-mediated control of mineralization, we demonstrated that the LPS-induced downregulation of OC expression was partially reversed after miR-138 knockdown. LPS, miR-138 mimic, and OC small interfering RNA inhibited osteoblast differentiation marker alkaline phosphatase activity, while miR-138 inhibitor and OC protein addition enhanced alkaline phosphatase activity. Supporting the role of OC as an essential modulator of osteoblast differentiation, knockdown of miR-138 or addition of OC protein partially rescued alkaline phosphatase activity in periodontal ligament (PDL) cells subjected to LPS treatment. Our data establish miR-138 inhibitor as a potential therapeutic agent for the prevention of the bone loss associated with advanced periodontal disease.
Collapse
Affiliation(s)
- X Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Z Chen
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - M Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G Gopinathan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - W Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - X Lu
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - S Li
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - C Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - T G H Diekwisch
- Department of Periodontics, Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
10
|
Guo C, Li L, Wang X, Liang C. Alterations in siRNA and miRNA expression profiles detected by deep sequencing of transgenic rice with siRNA-mediated viral resistance. PLoS One 2015; 10:e0116175. [PMID: 25559820 PMCID: PMC4283965 DOI: 10.1371/journal.pone.0116175] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022] Open
Abstract
RNA-mediated gene silencing has been demonstrated to serve as a defensive mechanism against viral pathogens by plants. It is known that specifically expressed endogenous siRNAs and miRNAs are involved in the self-defense process during viral infection. However, research has been rarely devoted to the endogenous siRNA and miRNA expression changes under viral infection if the resistance has already been genetically engineered in plants. Aiming to gain a deeper understanding of the RNA-mediated gene silencing defense process in plants, the expression profiles of siRNAs and miRNAs before and after viral infection in both wild type and transgenic anti-Rice stripe virus (RSV) rice plants were examined by small RNA high-throughput sequencing. Our research confirms that the newly generated siRNAs, which are derived from the engineered inverted repeat construct, is the major contributor of the viral resistance in rice. Further analysis suggests the accuracy of siRNA biogenesis might be affected when siRNAs machinery is excessively used in the transgenic plants. In addition, the expression levels of many known miRNAs are dramatically changed due to RSV infection on both wild type and transgenic rice plants, indicating potential function of those miRNAs involved in plant-virus interacting process.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Biology, Miami University, Oxford, Ohio, United States of America
| | - Li Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun Liang
- Department of Biology, Miami University, Oxford, Ohio, United States of America; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
11
|
Integrated miRNA and mRNA expression profiling in inflamed colon of patients with ulcerative colitis. PLoS One 2014; 9:e116117. [PMID: 25546151 PMCID: PMC4278881 DOI: 10.1371/journal.pone.0116117] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
Background Ulcerative colitis (UC) is associated with differential colonic expression of genes involved in immune response (e.g. IL8) and barrier integrity (e.g. cadherins). MicroRNAs (miRNAs) are regulators of gene expression and are involved in various immune-related diseases. In this study, we investigated (1) if miRNA expression in UC mucosa is altered and (2) if any of these changes correlate with mucosal mRNA expression. Integration of mRNA and miRNA expression profiling may allow the identification of functional links between dysregulated miRNAs and their target mRNA. Methodology Colonic mucosal biopsies were obtained from 17 UC (10 active and 7 inactive) patients and 10 normal controls. Total RNA was used to analyze miRNA and mRNA expression via Affymetrix miRNA 2.0 and Affymetrix Human Gene 1.0ST arrays, respectively. Both miRNA and gene expression profiles were integrated by correlation analysis to identify dysregulated miRNAs with their corresponding predicted target mRNA. Microarray data were validated with qRT-PCR. Regulation of IL8 and CDH11 expression by hsa-miR-200c-3p was determined by luciferase reporter assays. Results When comparing active UC patients vs. controls, 51 miRNAs and 1543 gene probe sets gave significantly different signals. In contrast, in inactive UC vs. controls, no significant miRNA expression differences were found while 155 gene probe sets had significantly different signals. We then identified potential target genes of the significantly dysregulated miRNAs and genes in active UC vs. controls and found a highly significant inverse correlation between hsa-miR-200c-3p and IL8, an inflammatory marker, and between hsa-miR-200c-3p and CDH11, a gene related to intestinal epithelial barrier function. We could demonstrate that hsa-miR-200c-3p directly regulates IL8 and CDH11 expression. Conclusion Differential expression of immune- and barrier-related genes in inflamed UC mucosa may be influenced by altered expression of miRNAs. Integrated analysis of miRNA and mRNA expression profiles revealed hsa-miR-200c-3p for use of miRNA mimics as therapeutics.
Collapse
|
12
|
MicroRNAs associated with the efficacy of photodynamic therapy in biliary tract cancer cell lines. Int J Mol Sci 2014; 15:20134-57. [PMID: 25380521 PMCID: PMC4264160 DOI: 10.3390/ijms151120134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/27/2014] [Accepted: 10/27/2014] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a palliative treatment option for unresectable hilar biliary tract cancer (BTC) showing a considerable benefit for survival and quality of life with few side effects. Currently, factors determining the cellular response of BTC cells towards PDT are unknown. Due to their multifaceted nature, microRNAs (miRs) are a promising analyte to investigate the cellular mechanisms following PDT. For two photosensitizers, Photofrin® and Foscan®, the phototoxicity was investigated in eight BTC cell lines. Each cell line (untreated) was profiled for expression of n=754 miRs using TaqMan® Array Human MicroRNA Cards. Statistical analysis and bioinformatic tools were used to identify miRs associated with PDT efficiency and their putative targets, respectively. Twenty miRs correlated significantly with either high or low PDT efficiency. PDT was particularly effective in cells with high levels of clustered miRs 25-93*-106b and (in case of miR-106b) a phenotype characterized by high expression of the mesenchymal marker vimentin and high proliferation (cyclinD1 and Ki67 expression). Insensitivity towards PDT was associated with high miR-200 family expression and (for miR-cluster 200a/b-429) expression of differentiation markers Ck19 and Ck8/18. Predicted and validated downstream targets indicate plausible involvement of miRs 20a*, 25, 93*, 130a, 141, 200a, 200c and 203 in response mechanisms to PDT, suggesting that targeting these miRs could improve susceptibility to PDT in insensitive cell lines. Taken together, the miRNome pattern may provide a novel tool for predicting the efficiency of PDT and-following appropriate functional verification-may subsequently allow for optimization of the PDT protocol.
Collapse
|
13
|
Zhu W, Chen YPP. Computational developments in microRNA-regulated protein-protein interactions. BMC SYSTEMS BIOLOGY 2014; 8:14. [PMID: 24507415 PMCID: PMC3922185 DOI: 10.1186/1752-0509-8-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/20/2014] [Indexed: 01/12/2023]
Abstract
Protein-protein interaction (PPI) is one of the most important functional components of a living cell. Recently, researchers have been interested in investigating the correlation between PPI and microRNA, which has been found to be a regulator at the post-transcriptional level. Studies on miRNA-regulated PPI networks will not only facilitate an understanding of the fine tuning role that miRNAs play in PPI networks, but will also provide potential candidates for tumor diagnosis. This review describes basic studies on the miRNA-regulated PPI network in the way of bioinformatics which includes constructing a miRNA-target protein network, describing the features of miRNA-regulated PPI networks and overviewing previous findings based on analysing miRNA-regulated PPI network features.
Collapse
Affiliation(s)
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia.
| |
Collapse
|
14
|
Chen D, Chen Z, Jin Y, Dragas D, Zhang L, Adjei BS, Wang A, Dai Y, Zhou X. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells. PLoS One 2013; 8:e80625. [PMID: 24312487 PMCID: PMC3849180 DOI: 10.1371/journal.pone.0080625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/04/2013] [Indexed: 12/23/2022] Open
Abstract
The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during physiological disease processes, such as dermal wound healing and tumorigenesis.
Collapse
Affiliation(s)
- Dan Chen
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Yi Jin
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dragan Dragas
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Leitao Zhang
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Barima S. Adjei
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anxun Wang
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One 2013; 8:e55719. [PMID: 23383271 PMCID: PMC3561302 DOI: 10.1371/journal.pone.0055719] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/29/2012] [Indexed: 12/27/2022] Open
Abstract
Recent evidence shows that altered microRNA-9 (miR-9) expression is implicated in the progression of gastric cancer. However, the exact roles and underlying mechanisms of miR-9 in the proliferation, invasion and metastasis of gastric cancer still remain unknown. In this study, miR-9 was found to be down-regulated and inversely correlated with the expression of cyclin D1 and v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets1) in gastric cancer tissues and cell lines. Bioinformatics analysis revealed the putative miR-9 binding sites in the 3′-untranslated regions (3′-UTR) of cyclin D1 and Ets1 mRNA. Ectopic expression or knockdown of miR-9 resulted in responsively altered expression of cyclin D1, Ets1 and their downstream targets phosphorylated retinoblastoma and matrix metalloproteinase 9 in cultured gastric cancer cell lines SGC-7901 and AGS. In the luciferase reporter system, miR-9 directly targeted the 3′-UTR of cyclin D1 and Ets1, and these effects were abolished by mutating the miR-9 binding sites. Over-expression of miR-9 suppressed the proliferation, invasion, and metastasis of SGC-7901 and AGS cells in vitro and in vivo. Restoration of miR-9-mediated down-regulation of cyclin D1 and Ets1 by transient transfection, rescued the cancer cells from decrease in proliferation, migration and invasion. Furthermore, anti-miR-9 inhibitor promoted the proliferation, migration and invasion of gastric cancer cells, while knocking down of cyclin D1 or Ets1 partially phenocopied the effects of miR-9 over-expression. These data indicate that miR-9 suppresses the expression of cyclin D1 and Ets1 via the binding sites in their 3′-UTR, thus inhibiting the proliferation, invasion and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Teng Qi
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dehua Yang
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Meng Qi
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Xiang
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Cardiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
16
|
Abstract
MicroRNAs are post-transcriptional regulators that control mRNA stability and the translation efficiency of their target genes. Mature microRNAs are approximately 22-nucleotide in length. They mediate post-transcriptional gene regulation by binding to the imperfect complementary sequences (a.k.a. microRNA regulatory elements, MRE) in the target mRNAs. It is estimated that more than one-third of the protein-coding genes in the human genome are regulated by microRNAs. The experimental methods to examine the interaction between the microRNA and its targeting site(s) in the mRNA are important for understanding microRNA functions. The luciferase reporter gene assay has recently been adapted to test the effect of microRNAs. In this chapter, we use a previously identified miR-138 targeting site in the 3'-untranslated region (3'-UTR) of the RhoC mRNA as an example to describe a quick method for testing the interaction of microRNA and mRNA.
Collapse
|
17
|
A Local Genetic Algorithm for the Identification of Condition-Specific MicroRNA-Gene Modules. ScientificWorldJournal 2013; 2013:197406. [PMID: 23401666 PMCID: PMC3564382 DOI: 10.1155/2013/197406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Transcription factor and microRNA are two types of key regulators of gene expression. Their regulatory mechanisms are highly complex. In this study, we propose a computational method to predict condition-specific regulatory modules that consist of microRNAs, transcription factors, and their commonly regulated genes. We used matched global expression profiles of mRNAs and microRNAs together with the predicted targets of transcription factors and microRNAs to construct an underlying regulatory network. Our method searches for highly scored modules from the network based on a two-step heuristic method that combines genetic and local search algorithms. Using two matched expression datasets, we demonstrate that our method can identify highly scored modules with statistical significance and biological relevance. The identified regulatory modules may provide useful insights on the mechanisms of transcription factors and microRNAs.
Collapse
|
18
|
Naifang S, Minping Q, Minghua D. Integrative Approaches for microRNA Target Prediction: Combining Sequence Information and the Paired mRNA and miRNA Expression Profiles. Curr Bioinform 2013; 8:37-45. [PMID: 23467572 PMCID: PMC3583062 DOI: 10.2174/1574893611308010008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/01/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022]
Abstract
Gene regulation is a key factor in gaining a full understanding of molecular biology. microRNA (miRNA), a novel class of non-coding RNA, has recently been found to be one crucial class of post-transactional regulators, and play important roles in cancer. One essential step to understand the regulatory effect of miRNAs is the reliable prediction of their target mRNAs. Typically, the predictions are solely based on the sequence information, which unavoidably have high false detection rates. Recently, some novel approaches are developed to predict miRNA targets by integrating the typical algorithm with the paired expression profiles of miRNA and mRNA. Here we review and discuss these integrative approaches and propose a new algorithm called HCTarget. Applying HCtarget to the expression data in multiple myeloma, we predict target genes for ten specific miRNAs. The experimental verification and a loss of function study validate our predictions. Therefore, the integrative approach is a reliable and effective way to predict miRNA targets, and could improve our comprehensive understanding of gene regulation.
Collapse
Affiliation(s)
- Su Naifang
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China ; Beijing International Center for Mathematical Research, Peking University, Beijing 100871, P.R. China
| | | | | |
Collapse
|
19
|
Bhattacharya A, Ziebarth JD, Cui Y. Systematic analysis of microRNA targeting impacted by small insertions and deletions in human genome. PLoS One 2012; 7:e46176. [PMID: 23049969 PMCID: PMC3457991 DOI: 10.1371/journal.pone.0046176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/30/2012] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA that play an important role in posttranscriptional regulation of mRNA. Genetic variations in miRNAs or their target sites have been shown to alter miRNA function and have been associated with risk for several diseases. Previous studies have focused on the most abundant type of genetic variations, single nucleotide polymorphisms (SNPs) that affect miRNA-mRNA interactions. Here, we systematically identified small insertions and deletions (indels) in miRNAs and their target sites, and investigated the effects of indels on miRNA targeting. We studied the distribution of indels in miRNAs and their target sites and found that indels in mature miRNAs, experimentally supported miRNA target sites and PAR-CLIP footprints have significantly lower density compared to flanking regions. We identified over 20 indels in the seed regions of miRNAs, which may disrupt the interactions between these miRNAs and their target genes. We also identified hundreds of indels that alter experimentally supported miRNA target sites. We mapped these genes to human disease pathways to identify indels that affect miRNA targeting in these pathways. We also used the results of genome-wide association studies (GWAS) to identify potential links between miRNA-related indels and diseases.
Collapse
Affiliation(s)
- Anindya Bhattacharya
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jesse D. Ziebarth
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yan Cui
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cui J, Eldredge JB, Xu Y, Puett D. MicroRNA expression and regulation in human ovarian carcinoma cells by luteinizing hormone. PLoS One 2011; 6:e21730. [PMID: 21765906 PMCID: PMC3134471 DOI: 10.1371/journal.pone.0021730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/07/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs have been widely-studied with regard to their aberrant expression and high correlation with tumorigenesis and progression in various solid tumors. With the major goal of assessing gonadotropin (luteinizing hormone, LH) contributions to LH receptor (LHR)-positive ovarian cancer cells, we have conducted a genome-wide transcriptomic analysis on human epithelial ovarian cancer cells to identify the microRNA-associated cellular response to LH-mediated activation of LHR. METHODS Human ovarian cancer cells (SKOV3) were chosen as negative control (LHR-) and stably transfected to express functional LHR (LHR+), followed by incubation with LH (0-20 h). At different times of LH-mediated activation of LHR the cancer cells were analyzed by a high-density Ovarian Cancer Disease-Specific-Array (DSA, ALMAC™), which profiled ∼ 100,000 transcripts with ∼ 400 non-coding microRNAs. FINDINGS In total, 65 microRNAs were identified to exhibit differential expression in either LHR expressing SKOV3 cells or LH-treated cells, a few of which have been found in the genomic fragile regions that are associated with abnormal deletion or amplification in cancer, such as miR-21, miR-101-1, miR-210 and miR-301a. By incorporating the dramatic expression changes observed in mRNAs, strong microRNA/mRNA regulatory pairs were predicted through statistical analyses coupled with collective computational prediction. The role of each microRNA was then determined through a functional analysis based on the highly-confident microRNA/mRNA pairs. CONCLUSION The overall impact on the transcriptome-level expression indicates that LH may regulate apoptosis and cell growth of LHR+ SKOV3 cells, particularly by reducing cancer cell proliferation, with some microRNAs involved in regulatory roles.
Collapse
Affiliation(s)
- Juan Cui
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Joanna B. Eldredge
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - David Puett
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
21
|
Jiang L, Dai Y, Liu X, Wang C, Wang A, Chen Z, Heidbreder CE, Kolokythas A, Zhou X. Identification and experimental validation of G protein alpha inhibiting activity polypeptide 2 (GNAI2) as a microRNA-138 target in tongue squamous cell carcinoma. Hum Genet 2010; 129:189-97. [PMID: 21079996 DOI: 10.1007/s00439-010-0915-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/05/2010] [Indexed: 12/23/2022]
Abstract
MicroRNA deregulation is a critical event in tumor initiation and progression. The down-regulation of microRNA-138 has been frequently observed in various cancers, including tongue squamous cell carcinoma (TSCC). Our previous studies suggest that deregulation of miR-138 is associated with the enhanced proliferation and invasion in TSCC cells. Here, we seek to identify the targets of miR-138 in TSCC, and explore their functional relevance in tumorigenesis. Our genome-wide expression profiling experiments identified a panel of 194 unique transcripts that were significantly down-regulated in TSCC cells transfected with miR-138. A comprehensive screening using six different sequence-based microRNA target prediction algorithms revealed that 51 out of these 194 down-regulated transcripts are potential direct targets for miR-138. These targets include: chloride channel, nucleotide-sensitive, 1A (CLNS1A), G protein alpha inhibiting activity polypeptide 2 (GNAI2), solute carrier family 20, member 1 (SLC20A1), eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), and Rho-related GTP-binding protein C (RhoC). GNAI2 is a known proto-oncogene that is involved in the initiation and progression of several different types of tumors. Direct targeting of miR-138 to two candidate binding sequences located in the 3'-untranslated region of GNAI2 mRNA was confirmed using luciferase reporter gene assays. Knockdown of miR-138 in TSCC cells enhanced the expression of GNAI2 at both mRNA and protein levels. In contrast, ectopic transfection of miR-138 reduced the expression of GNAI2, which, in consequence, led to reduced proliferation, cell cycle arrest and apoptosis. In summary, we identified a number of high-confident miR-138 target genes, including proto-oncogene GNAI2, which may play an important role in TSCC initiation and progression.
Collapse
Affiliation(s)
- Lu Jiang
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Room 530C, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|