1
|
Garg D, Daigavane S. Photobiomodulation in Ophthalmology: A Comprehensive Review of Bench-to-Bedside Research and Clinical Integration. Cureus 2024; 16:e69651. [PMID: 39429338 PMCID: PMC11488463 DOI: 10.7759/cureus.69651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Photobiomodulation (PBM), also known as low-level laser therapy, is an emerging therapeutic modality in ophthalmology, attracting increasing interest for its potential to manage a variety of ocular conditions. PBM employs low-energy light within the red and near-infrared spectrum to penetrate biological tissues, where it interacts with cellular chromophores. This interaction is believed to enhance mitochondrial function, boost adenosine triphosphate (ATP) production, and reduce oxidative stress, leading to improved cellular repair and tissue regeneration. Recent bench research has demonstrated PBM's efficacy in cellular and animal models, showing its ability to modulate inflammatory processes and promote healing in retinal and corneal diseases. For instance, in retinal models, PBM has been observed to reduce apoptosis and support cell survival under stress conditions. Similarly, studies in corneal models suggest that PBM can accelerate wound healing and reduce scarring. Clinical trials further corroborate these findings, revealing that PBM can enhance treatment outcomes in several ocular diseases, including age-related macular degeneration, diabetic retinopathy, and dry eye disease. Patients undergoing PBM have reported improvements in visual acuity, reduced retinal inflammation, and better tear film stability, highlighting its potential as an adjunctive therapy. This review also explores the integration of PBM into clinical practice, discussing current treatment protocols, safety considerations, and the latest advancements in PBM technology. By offering a holistic overview, the review aims to provide clinicians and researchers with valuable insights into PBM's role in modern ophthalmic care, emphasizing its potential to enhance treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Diksha Garg
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Chen R, Lu J, Dong J, Zhu Y. Intense pulsed light therapy for ocular surface diseases. Lasers Med Sci 2024; 39:111. [PMID: 38656565 DOI: 10.1007/s10103-024-04060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Intense pulsed light (IPL) is a non-laser, high-intensity light source that has been shown to play a valuable role in dermatology and has been adopted in ophthalmology for treating meibomian gland dysfunction (MGD). In this review, we discuss the mechanism of action of IPL, including its benefits in ophthalmology. IPL therapy has been shown to improve tear film stability, meibomian gland (MG) function, and subjective symptoms of ocular dryness in MGD patients. Moreover, emerging evidence suggests that IPL therapy is beneficial for other ocular surface diseases, such as blepharitis and chalazia. Hence, it can be inferred that IPL has potential as a therapeutic modality in future applications. Large clinical and experimental trials are needed to exploit the full potential of IPL as a treatment for recurrent chalazia, Sjögren's syndrome, and other causes of dry eye disease (DED). This paper reviews the published literature related to the application of IPL for treating ocular surface diseases.
Collapse
Affiliation(s)
- Ruida Chen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 1 Xihu avenue, Hangzhou, Zhejiang, 310009, China
- Eye Department, Affiliated Dongyang Hospital, Wenzhou Medical University, Dongyang, China
| | - Jiale Lu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 1 Xihu avenue, Hangzhou, Zhejiang, 310009, China
| | - Jilian Dong
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yirui Zhu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 1 Xihu avenue, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
3
|
Franceschelli S, D'Andrea P, Farina M, Gallenga CE, Grilli A, Pesce M, Di Donato A, Lucchetta D, Ambrosini G, Benedetti S, Benedetti M, Lobefalo L. Short term effects of extremely low irradiance photobiomodulation on retinal function, in age related macular degeneration. Eur J Ophthalmol 2024:11206721241236919. [PMID: 38444247 DOI: 10.1177/11206721241236919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
BACKGROUND recently much studies evidenced the potential role of photo-biomodulation (PBM) in patients affected by Age-related Macular Degeneration (AMD). We designed a new wearable device for self-medication that employs the same broadband red light described in literature, but with extremely low irradiance. AIM to demonstrate the safety and effectiveness of low-fluence light stimulations emitted by a LED source with appropriate wavelengths through our new device in improving short-term visual function in patients affected by severe non neovascular AMD. MATERIALS AND METHODS we prospectively enrolled patients affected by severe non-neovascular AMD with a relative sparing of the foveal region. All the patients were randomly assigned in placebo or in treatment group. The treatment consisted of 10 sessions of 10-min each, using the new device comprised of micro-LEDs that emitted light onto an amorphous support assembled within Metallic eyeglasses. The placebo group blindly underwent the same number of PBM sessions with the micro-LED turned off. Before and after each placebo/treatment sessions all the patients received: optical coherence tomography (OCT), Best-Corrected Visual Acuity (BCVA) and Microperimetry (MP). RESULTS no significant differences in the anatomical parameters were observed in the two groups. The MP mean sensitivity and the central visual function both far and near significantly improved in the treated group (respectively p < 0.001, p < 0.001). CONCLUSIONS our pivotal demonstrated that the LED PBM delivered through our new device is a safe and effective tool for improving short-term visual function in patients affected by severe non-neovascular AMD.
Collapse
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Pierdomenico D'Andrea
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Marco Farina
- Department of Information Engineering, Marche Polytechnic University, Ancona, Italy
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Department of Ophthalmology, SM Croci Hospital, Ravenna, Italy
| | - Alfredo Grilli
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Andrea Di Donato
- Department of Information Engineering, Marche Polytechnic University, Ancona, Italy
| | - Daniele Lucchetta
- Materials, Environmental Sciences and Urban Planning, Marche Polytechnic University, Ancona, Italy
| | - Giovanna Ambrosini
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Stefano Benedetti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Margherita Benedetti
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" Chieti- Pescara, Chieti, Italy
| | - Lucio Lobefalo
- Department of Medical and Oral Sciences and Biotechnologies, "G. d'Annunzio" University, Chieti, Italy
- Department of Ophthalmology, Villa Verde Hospital, Fermo, Italy
| |
Collapse
|
4
|
Fear EJ, Torkelsen FH, Zamboni E, Chen K, Scott M, Jeffery G, Baseler H, Kennerley AJ. Use of 31 P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 2023; 22:e14005. [PMID: 37803929 PMCID: PMC10652330 DOI: 10.1111/acel.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.
Collapse
Affiliation(s)
- Elizabeth J. Fear
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Elisa Zamboni
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | - Martin Scott
- Department of PsychologyUniversity of YorkYorkUK
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Glenn Jeffery
- Faculty of Brain SciencesInstitute of Ophthalmology, UCLLondonUK
| | - Heidi Baseler
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of PsychologyUniversity of YorkYorkUK
| | - Aneurin J. Kennerley
- Department of ChemistryUniversity of YorkYorkUK
- Institute of SportManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
5
|
Girgis S, Lee LR. Treatment of dry age-related macular degeneration: A review. Clin Exp Ophthalmol 2023; 51:835-852. [PMID: 37737509 DOI: 10.1111/ceo.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023]
Abstract
Age-related macular degeneration is a global disease with a significant societal impact. The advent of anti-vascular endothelial growth factor therapy (anti-VEGF) has revolutionised the treatment of neovascular age-related macular degeneration (nAMD). Dry age-related macular degeneration (dAMD) is being investigated for possible therapeutic options. The therapeutic categories undergoing clinical trials include complement pathway inhibitors, visual cycle modulators, reduction of toxic byproducts, antioxidative therapy, neuroprotective agents, laser therapy, surgical options, gene therapy, stem cell therapy, and miscellaneous treatments. Two intravitreal anti-complement factors (pegcetacoplan and avacincaptad pegol) have recently shown phase 3 clinical trial evidence of a reduction in the growth of geographic atrophy. In this review, we provide an update on treatment options currently undergoing clinical research trials for the management of dAMD and preventing the progression of Geographic Atrophy (GA).
Collapse
Affiliation(s)
| | - Lawrence R Lee
- City Eye Centre, Brisbane, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Saint Lucia, Queensland, Australia
| |
Collapse
|
6
|
Benlahbib M, Cohen SY, Torrell N, Colantuono D, Crincoli E, Amoroso F, Semoun O, Jung C, Souied EH. PHOTOBIOMODULATION THERAPY FOR LARGE SOFT DRUSEN AND DRUSENOID PIGMENT EPITHELIAL DETACHMENT IN AGE-RELATED MACULAR DEGENERATION: A Single-Center Prospective Pilot Study. Retina 2023; 43:1246-1254. [PMID: 37027819 DOI: 10.1097/iae.0000000000003805] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
PURPOSE To evaluate visual acuity and morphologic changes after photobiomodulation (PBM) for patients affected with large soft drusen and/or drusenoid pigment epithelial detachment associated with dry age-related macular degeneration. METHOD Twenty eyes with large soft drusen and/or drusenoid pigment epithelial detachment age-related macular degeneration were included and treated using the LumiThera Valeda Light Delivery System. All patients underwent two treatments per week for 5 weeks. Outcome measures included best-corrected visual acuity, microperimetry-scotopic testing, drusen volume, central drusen thickness, and quality of life score at baseline and month 6 (M6) follow-up. Data of best-corrected visual acuity, drusen volume, and central drusen thickness were also recorded at week 5 (W5). RESULTS Best-corrected visual acuity significantly improved at M6 with a mean score gain of 5.5 letters ( P = 0.007). Retinal sensitivity decreased by 0.1 dB ( P = 0.17). The mean fixation stability increased by 0.45% ( P = 0.72). Drusen volume decreased by 0.11 mm 3 ( P = 0.03). Central drusen thickness was reduced by a mean of 17.05 µ m ( P = 0.01). Geographic atrophy area increased by 0.06 mm 2 ( P = 0.01) over a 6-month follow-up, and quality of life score increased by 3,07 points on average ( P = 0.05). One patient presented a drusenoid pigment epithelial detachment rupture at M6 after PBM treatment. CONCLUSION The visual and anatomical improvements in our patients support previous reports on PBM. PBM may provide a valid therapeutic option for large soft drusen and drusenoid pigment epithelial detachment age-related macular degeneration and may potentially slow the natural course of the disease.
Collapse
Affiliation(s)
- Manal Benlahbib
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
| | - Salomon Yves Cohen
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
- Ophthalmology Center for Imaging and Laser, Paris, France; and
| | - Nuria Torrell
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
| | - Donato Colantuono
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
| | - Emanuele Crincoli
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
| | - Francesca Amoroso
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
| | - Oudy Semoun
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
| | - Camille Jung
- Clinical Research Center, Centre Hospitaliser Intercommunal de Creteil, Creteil, France
| | - Eric H Souied
- Department of Ophthalmology, Department of Ophthalmology, Centre Hospitaliser Intercommunal de Creteil, University of Paris Est-Creteil, Creteil, France
| |
Collapse
|
7
|
Servillo A, Sacconi R, Zucchiatti I, Grachova E, Querques L, Prascina F, Tombolini B, Dorin G, Mainster M, Bandello F, Querques G. No-Dose Photodynamic Therapy Against Half-Dose Photodynamic Therapy for Treatment of Central Serous Chorioretinopathy. Ophthalmol Ther 2023; 12:2199-2208. [PMID: 37289355 PMCID: PMC10287588 DOI: 10.1007/s40123-023-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
INTRODUCTION This study aimed to describe the effects of no-dose full-fluence photodynamic therapy without verteporfin (no-dose PDT) and to compare no-dose PDT with half-dose verteporfin full-fluence photodynamic therapy (HDFF PDT) for managing chronic central serous chorioretinopathy (cCSC). METHODS This retrospective study evaluated 11 patients with chronic recurrent CSC treated with no-dose PDT between January 2019 and March 2022. Most of these patients were also treated with HDFF PDT a minimum of 3 months before and were considered as the control group. We described the changes of best corrected visual acuity (BCVA), maximum subretinal fluid (mSRF), foveal subretinal fluid (fSRF), and choroidal thickness (CT) 8 ± 2 weeks after no-dose PDT, and we compared BVCA, mSRF, fSRF, and CT of no-dose PDT with those of the of same patients previously treated with HDFF PDT. RESULTS Fifteen eyes of 11 patients (10 male, mean age 54 ± 12 years) received no-dose PDT; among these, 10 eyes of 8 patients (7 male, mean age 53 ± 12 years) also received HDFF PDT. Three eyes showed complete resolution of fSRF after no-dose PDT. No significant differences were disclosed between treatment with and without verteporfin comparing BCVA, mSRF, fSRF, and CT at baseline and 8 ± 2 weeks from the treatment (p > 0.05 in all analyses). CONCLUSION BVCA and CT significantly improved after no-dose PDT. Short-term functional and anatomical treatment outcomes for cCSC were similar for HDFF PDT and no-dose PDT. We hypothesize that the potential benefits of no-dose PDT may arise from thermal elevation that triggers and enhances photochemical activities by endogenous fluorophores, activating a biochemical cascade response that rescues/replaces sick, dysfunctional retinal pigment epithelial (RPE) cells. Results of this study suggest the potential value of a prospective clinical trial to evaluate no-dose PDT for managing cCSC, especially when verteporfin is contraindicated or unavailable.
Collapse
Affiliation(s)
- Andrea Servillo
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Riccardo Sacconi
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Ilaria Zucchiatti
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Elena Grachova
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Lea Querques
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Francesco Prascina
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Beatrice Tombolini
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | | | - Martin Mainster
- Department of Ophthalmology, University of Kansas Medical School of Medicine, Prairie Village, KS, USA
| | - Francesco Bandello
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Giuseppe Querques
- Division of Head and Neck, Ophthalmology Unit, University Vita-Salute, IRCSS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
8
|
Calbiague García V, Cadiz B, Herrera P, Díaz A, Schmachtenberg O. Evaluation of Photobiomodulation and Boldine as Alternative Treatment Options in Two Diabetic Retinopathy Models. Int J Mol Sci 2023; 24:ijms24097918. [PMID: 37175628 PMCID: PMC10178531 DOI: 10.3390/ijms24097918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Diabetic retinopathy causes progressive and irreversible damage to the retina through activation of inflammatory processes, overproduction of oxidative species, and glial reactivity, leading to changes in neuronal function and finally ischemia, edema, and hemorrhages. Current treatments are invasive and mostly applied at advanced stages, stressing the need for alternatives. To this end, we tested two unconventional and potentially complementary non-invasive treatment options: Photobiomodulation, the stimulation with near-infrared light, has shown promising results in ameliorating retinal pathologies and insults in several studies but remains controversial. Boldine, on the other hand, is a potent natural antioxidant and potentially useful to prevent free radical-induced oxidative stress. To establish a baseline, we first evaluated the effects of diabetic conditions on the retina with immunofluorescence, histological, and ultrastructural analysis in two diabetes model systems, obese LepRdb/db mice and organotypic retinal explants, and then tested the potential benefits of photobiomodulation and boldine treatment in vitro on retinal explants subjected to high glucose concentrations, mimicking diabetic conditions. Our results suggest that the principal subcellular structures affected by these conditions were mitochondria in the inner segment of photoreceptors, which displayed morphological changes in both model systems. In retinal explants, lactate metabolism, assayed as an indicator of mitochondrial function, was altered, and decreased photoreceptor viability was observed, presumably as a consequence of increased oxidative-nitrosative stress. The latter was reduced by boldine treatment in vitro, while photobiomodulation improved mitochondrial metabolism but was insufficient to prevent retinal structural damage caused by high glucose. These results warrant further research into alternative and complementary treatment options for diabetic retinopathy.
Collapse
Affiliation(s)
- Víctor Calbiague García
- Ph. D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Bárbara Cadiz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Herrera
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Alejandra Díaz
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| |
Collapse
|
9
|
Zeng H, Gong L. A Review of Applications and Intracellular Mechanisms of Intense Pulsed Light in Eyelid Inflammatory Diseases. Photobiomodul Photomed Laser Surg 2023; 41:104-119. [PMID: 36927050 DOI: 10.1089/photob.2022.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Objective: To evaluate relevant clinical outcomes and conclude possible mechanisms of intense pulsed light (IPL) in eyelid inflammation. Background: IPL devices were primarily applied in cutaneous vascular malformations and have been used in ocular diseases for about 20 years, mostly including meibomian gland dysfunction (MGD), blepharitis, and ocular rosacea. Recent findings: Seventy-two original clinical researches were included, 57 for MGD, 4 for blepharitis or blepharitis-related keratoconjunctivitis, and 11 for rosacea. Dry eye symptoms, (tear) break-up time (BUT), and meibomian structure and/or functions were improved in most patients, but production of reactive oxygen species is an important link in the photobiomodulation mediated by IPL, which can influence numerous signal pathways to achieve anti-inflammatory, anti-infective, and prodifferentiation effects. Conclusions: The evidence suggests that IPL is an effective therapeutic tool for most patients with MGD, but more clinical evidence is needed for other indications.
Collapse
Affiliation(s)
- Hongya Zeng
- Department of Ophthalmology and Vision Science, the Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology and Vision Science, the Eye & ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Shanghai, China
| |
Collapse
|
10
|
Vyawahare H, Shinde P. Age-Related Macular Degeneration: Epidemiology, Pathophysiology, Diagnosis, and Treatment. Cureus 2022; 14:e29583. [PMID: 36312607 PMCID: PMC9595233 DOI: 10.7759/cureus.29583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022] Open
Abstract
The greatest global root of irremediable amaurosis in the venerable is age-related macular degeneration (AMD), a complex eye condition. Clinically, AMD is characterized as being in an early stage to late stage and initially affects the macula, which is the center of the retina (advanced AMD). Age-related cellular and metabolic imbalance are made worse by the creation of excessive amounts of free radical species, which causes mitochondrial malfunction. As a result, in AMD-affected eyes, the deprivation of melanocytes, confection, and eventually atrophy within the retinal tissue are caused by the continued proliferation of oxidative stress caused by systemic antioxidant capacity depletion. In the urbanized, industrialized world, age-related macular degeneration (AMD) is one of the major causes of central vision loss in the older age group. Although several causes and mechanisms for the dysfunction and degeneration of the retinal pigment epithelium (RPE) have previously been identified, the condition’s symptoms are still not fully understood. Etiopathogenesis is still not entirely understood. As a result, the RPE fails, allowing an accumulation of aberrant misfolded proteins, due to the loss of anatomical control over oppression, altered homeostasis, dysfunctional lipid homeostasis, and failure of mitochondria. Due to the multitude of interconnected processes, numerous complicated therapy combinations will probably be the best option to deliver the best visual outcomes; these combinations will vary depending on the kind and degree of the condition being treated. Undoubtedly, this will lead to the development of customized preventative medications and, hopefully, the revelation of a potential cure. All the mechanisms involved in the etiology of AMD should be continuously probed to create covariates for other contemporaneous or future problems.
Collapse
|
11
|
Chen Z, Chen B, Hu P, Liu H, Zheng D. A preliminary observation on rod cell photobiomodulation in treating diabetic macular edema. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2022; 2:100051. [PMID: 37846386 PMCID: PMC10577862 DOI: 10.1016/j.aopr.2022.100051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/25/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2023]
Abstract
Purpose To evaluate the safety and effectiveness of photobiomodulation (PBM) in the treatment of diabetic macular edema (DME). Methods It was a single-center, self-controlled prospective study. The clinical records of 12 diabetic retinopathy patients (5 males and 7 females, 20 eyes in total) who were treated with PBM for DME at the Second Affiliated Hospital, Zhejiang University School of Medicine, were analyzed. The mean age was 56 (26-68) years. All the participants received PBM treatment during darkness at night in no less than 5 days per week and no less than 8 h per day. In the baseline check and follow-up checks (1, 2, 6, 10, and 12 months after the start of treatment), the best-corrected visual acuity, the thickness of the retina in the macula, and the changes of the fundus lesions were observed. Wilcoxon signed rank test was used to compare the results before and after treatment. P < 0.05 was considered statistically significant. Results No fundus complication was observed during follow-up checks. In baseline and 12-month follow-up checks, the best-corrected visual acuity was 71.75 ± 12.47 and 79.50 ± 10.85, maximal retinal thickness in macular area was 390.95 ± 77.12 μm and 354.13 ± 55.03 μm, average retinal thickness in macular area was 334.25 ± 36.45 μm and 314.31 ± 33.28 μm, foveal thickness was 287.00 ± 46.79 μm and 265.63 ± 67.14 μm. The best-corrected visual acuity, average retinal thickness in macular area in consecutive follow-up results except that in the 1st month showed significant difference compared with baseline results. There were significant difference between every follow-up result and baseline result of maximal retinal thickness in macular area (P < 0.05). All follow-up results of foveal thickness were not significantly different (P > 0.05) from the baseline result, except that in the 6th month (P = 0.049). Obvious improvement could be observed in retinal fundus fluorescein angiography images. Conclusions PBM is a safe and effective treatment of DME, which deserves further investigation.
Collapse
Affiliation(s)
- Zhiqing Chen
- Eye Centre, The Second Affiliated Hospital of the School of Medicine, Zhejiang University, Hangzhou, China
| | - Binbin Chen
- Eye Centre, The Second Affiliated Hospital of the School of Medicine, Zhejiang University, Hangzhou, China
| | - Peike Hu
- Eye Centre, The Second Affiliated Hospital of the School of Medicine, Zhejiang University, Hangzhou, China
| | - Haipeng Liu
- Research Centre for Intelligent Healthcare, University of Coventry, Coventry, UK
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, University of Coventry, Coventry, UK
| |
Collapse
|
12
|
Carroll JD. Literature Watch September 2021. Photobiomodul Photomed Laser Surg 2021; 39:799-801. [DOI: 10.1089/photob.2021.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|