1
|
Narváez-Bandera I, Suárez-Gómez D, Castro-Rivera CDM, Camasta-Beníquez A, Durán-Quintana M, Cabrera-Ríos M, Isaza CE. Hepatitis C virus infection and Parkinson's disease: insights from a joint sex-stratified BioOptimatics meta-analysis. Sci Rep 2024; 14:22838. [PMID: 39354018 PMCID: PMC11445468 DOI: 10.1038/s41598-024-73535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatitis C virus (HCV) infection poses a significant public health challenge and often leads to long-term health complications and even death. Parkinson's disease (PD) is a progressive neurodegenerative disorder with a proposed viral etiology. HCV infection and PD have been previously suggested to be related. This work aimed to identify potential biomarkers and pathways that may play a role in the joint development of PD and HCV infection. Using BioOptimatics-bioinformatics driven by mathematical global optimization-, 22 publicly available microarray and RNAseq datasets for both diseases were analyzed, focusing on sex-specific differences. Our results revealed that 19 genes, including MT1H, MYOM2, and RPL18, exhibited significant changes in expression in both diseases. Pathway and network analyses stratified by sex indicated that these gene expression changes were enriched in processes related to immune response regulation in females and immune cell activation in males. These findings suggest a potential link between HCV infection and PD, highlighting the importance of further investigation into the underlying mechanisms and potential therapeutic targets involved.
Collapse
Affiliation(s)
- Isis Narváez-Bandera
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Deiver Suárez-Gómez
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
| | - Coral Del Mar Castro-Rivera
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico
| | - Alaina Camasta-Beníquez
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico
| | - Morelia Durán-Quintana
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico
| | - Mauricio Cabrera-Ríos
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
- Industrial Engineering Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico
| | - Clara E Isaza
- Bioengineering Graduate Program, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Mayagüez, 00681, Puerto Rico.
- Biology Department, The Applied Optimization Group, University of Puerto Rico-Mayagüez, Call Box 9000, Mayagüez, 00681, Puerto Rico.
| |
Collapse
|
2
|
Ahmad F, Deshmukh N, Webel A, Johnson S, Suleiman A, Mohan RR, Fraunfelder F, Singh PK. Viral infections and pathogenesis of glaucoma: a comprehensive review. Clin Microbiol Rev 2023; 36:e0005723. [PMID: 37966199 PMCID: PMC10870729 DOI: 10.1128/cmr.00057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide, caused by the gradual degeneration of retinal ganglion cells and their axons. While glaucoma is primarily considered a genetic and age-related disease, some inflammatory conditions, such as uveitis and viral-induced anterior segment inflammation, cause secondary or uveitic glaucoma. Viruses are predominant ocular pathogens and can impose both acute and chronic pathological insults to the human eye. Many viruses, including herpes simplex virus, varicella-zoster virus, cytomegalovirus, rubella virus, dengue virus, chikungunya virus, Ebola virus, and, more recently, Zika virus (ZIKV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), have been associated with sequela of either primary or secondary glaucoma. Epidemiological and clinical studies suggest the association between these viruses and subsequent glaucoma development. Despite this, the ocular manifestation and sequela of viral infections are not well understood. In fact, the association of viruses with glaucoma is considered relatively uncommon in part due to underreporting and/or lack of long-term follow-up studies. In recent years, literature on the pathological spectrum of emerging viral infections, such as ZIKV and SARS-CoV-2, has strengthened this proposition and renewed research activity in this area. Clinical studies from endemic regions as well as laboratory and preclinical investigations demonstrate a strong link between an infectious trigger and development of glaucomatous pathology. In this article, we review the current understanding of the field with a particular focus on viruses and their association with the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Nikhil Deshmukh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Aaron Webel
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Sandra Johnson
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Ayman Suleiman
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Rajiv R. Mohan
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, USA
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Frederick Fraunfelder
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology, Mason Eye Institute, University of Missouri School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
3
|
Mori A, Seki H, Mizukoshi S, Uezono T, Sakamoto K. Role of Prostaglandins in Nitric Oxide-Induced Glial Cell-Mediated Vasodilation in Rat Retina. Biomolecules 2022; 12:biom12101403. [PMID: 36291611 PMCID: PMC9599243 DOI: 10.3390/biom12101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
We previously identified that NO derived from neuronal cells acts on glial cells and causes vasodilation in the healthy rat retina via the release of epoxyeicosatrienoic acids (EETs) and prostaglandins (PGs) by activation of the arachidonic acid cascade. However, it is not clear which PG types are involved in these responses. The aim of the present study was to identify prostanoid receptors involved in glial cell-derived vasodilation induced by NO in rat retina. Male Wistar rats were used to examine the effects of intravitreal pretreatment with indomethacin, a cyclooxygenase inhibitor; PF-04418948, a prostanoid EP2 receptor antagonist; and CAY10441, a prostanoid IP receptor antagonist, on the changes in the retinal arteriolar diameter induced by intravitreal administration of NOR3, an NO donor. Retinal arteriolar diameters were measured using ocular fundus images captured with a high-resolution digital camera in vivo. The increase in the retinal arteriolar diameter induced by intravitreal injection of NOR3 was significantly suppressed by intravitreal pretreatment with indomethacin and PF-04418948, but not by CAY10441. The dose of PF-04418948 and CAY10441 injected intravitreally in the present study significantly reduced the increase in the retinal arteriolar diameter induced by prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), respectively. These results suggest that activation of the arachidonic acid cascade and subsequent stimulation of prostanoid EP2 receptors are involved in rat retinal vasodilatory responses evoked by NO-induced glial cell stimulation. Therefore, glial cell-derived PGE2, similar to EETs, may play an important role in retinal vasodilatory mechanisms.
Collapse
|