1
|
Liu X, Zhao F, Yuan W, Xu J. Causal relationships between height, screen time, physical activity, sleep and myopia: univariable and multivariable Mendelian randomization. Front Public Health 2024; 12:1383449. [PMID: 38966704 PMCID: PMC11222599 DOI: 10.3389/fpubh.2024.1383449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024] Open
Abstract
Background This study aims to investigate the independent causal relation between height, screen time, physical activity, sleep and myopia. Methods Instrumental variables (IVs) for exposures and outcome were obtained from the largest publicly available genome-wide association studies (GWAS) databases. First, we performed a bidirectional univariate MR analysis using primarily the inverse variance weighted method (IVW) with height, screen time, physical activity and sleep as the exposure and myopia as the outcome to investigate the causal relationship between exposures and myopia. Sensitivity analysis was used to demonstrate its robustness. Then the multivariable MR (MVMR) and MR-based mediation approach was further used to estimate the mediating effect of potential confounders (education and time outdoors) on causality. Results The results of univariate MR analysis showed that taller height (OR = 1.009, 95% CI = 1.005-1.012, p = 3.71 × 10-7), longer time on computer (OR = 1.048, 95% CI = 1.029-1.047, p = 3.87 × 10-7) and less moderate physical activity (OR = 0.976, 95% CI = 0.96-0.991 p = 2.37 × 10-3) had a total effect on the increased risk of developing myopia. Meanwhile our results did not have sufficient evidence to support the causal relationship between chronotype (p = 0.637), sleep duration (p = 0.952) and myopia. After adjusting for education, only taller height remains an independent risk factor for myopia. After adjusting for education, the causal relationship between height, screen and myopia still had statistical significance. A reverse causal relationship was not found in our study. Most of the sensitivity analyses showed consistent results with those of the IVW method. Conclusion Our MR study revealed that genetically predicted taller height, longer time on computer, less moderate physical activity increased the risk of myopia. After full adjustment for confounders, only height remained independently associated with myopia. As a complement to observational studies, the results of our analysis provide strong evidence for the improvement of myopia risk factors and provide a theoretical basis for future measures to prevent and control myopia in adolescents.
Collapse
Affiliation(s)
- Xiaoyu Liu
- The Third People’s Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jun Xu
- The Third People’s Hospital of Dalian, Dalian Municipal Eye Hospital, Dalian Municipal Cancer Hospital, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning, China
| |
Collapse
|
2
|
Umaefulam V, Safi S, Lingham G, Gordon I, Mueller A, Krishnam NS, Alves Carneiro VL, Yu M, Evans JR, Keel S. Approaches for delivery of refractive and optical care services in community and primary care settings. Cochrane Database Syst Rev 2024; 5:CD016043. [PMID: 38808577 PMCID: PMC11134311 DOI: 10.1002/14651858.cd016043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Uncorrected refractive error is a leading cause of vision impairment which, in most cases, can be managed with the appropriate spectacle correction. In 2021, the World Health Assembly endorsed a global target of a 40-percentage-point increase in effective coverage of refractive error by 2030. To achieve this global target, equitable access to refractive and optical services within community and primary care settings needs to be strengthened. This review will inform the development of technical guidance to support improvements in the testing and correction of refractive error among World Health Organization (WHO) member states. OBJECTIVES To determine the range of approaches for delivery of refractive and optical care services in community and primary care settings, and the methods employed for their evaluation. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and Global Health databases, grey literature, and annual reports and websites of relevant organizations involved in eye-care delivery from January 2002 to November 2022 to identify approaches for refractive and optical service delivery. SELECTION CRITERIA We included observational and interventional studies, reviews, and reports from relevant organizations related to delivering refractive services and optical services for preschool and school-aged children and adults in community and primary care settings published between January 2002 and November 2022. We searched for studies and reports published within the last 20 years because vision impairment due to uncorrected refractive error has only recently become a public health and eye health priority, therefore we did not expect to find much relevant literature until after 2002. DATA COLLECTION AND ANALYSIS Two review authors screened titles, abstracts and full texts, and extracted data. We resolved any discrepancies through discussion. We synthesized data, and presented results as tables, figures, and case studies. This project was led by the World Health Organization (WHO) Vision and Eye Care Programme. MAIN RESULTS We identified 175 studies from searches of databases and grey literature, 146 records from company reports, and 81 records from website searches of relevant organizations that matched our inclusion criteria. Delivery approaches for refractive and optical services in community care included school-based, pharmacy, and outreach models, whereas primary care approaches comprised vision centre, health centre, and a combination of vision or health centre and door-to-door delivery. In community care, school-based and outreach approaches were predominant, while in primary care, a vision-centre approach was mainly used. In the WHO African region, the school-based and outreach approaches were mainly reported while, in the Americas, the outreach approach was mostly used. Very few approaches for service delivery were reported in the WHO Eastern Mediterranean region. Prominent gaps exist in the evaluation of the approaches, and few studies attempted to evaluate the approaches for delivery of refractive and optical care services. AUTHORS' CONCLUSIONS We comprehensively describe a range of approaches for delivery of refractive and optical services in community and primary care. Further evaluation of their effectiveness will better inform the application of these service-delivery approaches. The study outcomes will help guide WHO member states in strengthening refractive and optical services at community and primary care levels. FUNDING This scoping review was supported by the Vision and Eye care Programme, World Health Organization and ATscale Global Partnership. REGISTRATION The protocol of this scoping review was published in the Open Source Framework.
Collapse
Affiliation(s)
- Valerie Umaefulam
- Vision and Eye Care Programme, World Health Organization, Geneva, Switzerland
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gareth Lingham
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Australia
| | - Iris Gordon
- International Centre for Eye Health (ICEH), London School of Hygiene & Tropical Medicine, London, UK
| | - Andreas Mueller
- Noncommunicable Diseases, World Health Organization, Melbourne, Australia
| | | | - Vera L Alves Carneiro
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Mitasha Yu
- Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland
| | - Jennifer R Evans
- International Centre for Eye Health (ICEH), London School of Hygiene & Tropical Medicine, London, UK
| | - Stuart Keel
- Vision and Eye Care Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
3
|
Kuoliene K, Danieliene E, Tutkuviene J. Eye morphometry, body size, and flexibility parameters in myopic adolescents. Sci Rep 2024; 14:6787. [PMID: 38514709 PMCID: PMC10958051 DOI: 10.1038/s41598-024-57347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
The aim of this study was to investigate the anatomical and physiological ocular parameters in adolescents with myopia and to examine the relations between refractive error (SER), ocular biometry, body size and flexibility parameters in myopic adolescents. A cross-sectional study of 184 myopic adolescents, aged 15 to 19 years was conducted. Refractive error and corneal curvature measures of the eye were evaluated using an autorefractometer under cycloplegia. Central corneal thickness was determined by contact pachymetry. The ocular axial length, anterior and vitreous chamber depth, and lens thickness were measured using A-scan biometry ultrasonography. Height and body weight were measured according to a standardized protocol. Body mass index (BMI) was subsequently calculated. Beighton scale was used to measure joint flexibility. Body stature was positively correlated with ocular axial length (r = 0.39, p < 0.001) and vitreous chamber depth (r = 0.37, p < 0.001). There was a negative correlation between height and SER (r = - 0.46; p < 0.001). Beighton score and body weight had weak positive correlations with axial length and vitreous chamber depth, and a weak negative correlation with SER. A significantly more negative SER was observed in the increased joint mobility group (p < 0.05; U = 5065.5) as compared to normal joint mobility group: mean - 4.37 ± 1.85 D (median - 4.25; IQR - 6.25 to - 3.25 D) and mean - 3.72 ± 1.66 D (median - 3.50; IQR - 4.75 to - 2.25 D) respectively. There was a strong association between height and axial length, as well as SER. Higher degree of myopia significantly correlated with greater Beighton score (increased joint mobility).
Collapse
Affiliation(s)
- Kristina Kuoliene
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Egle Danieliene
- Clinic of Ear, Nose, Throat and Eye Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Janina Tutkuviene
- Department of Anatomy, Histology and Anthropology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
4
|
Low YC, Mohd-Ali B, Shahimin MM, Mohidin N, Abdul-Hamid H, Mokri SS. Peripheral Eye Length Evaluation in Myopic Children Undergoing Orthokeratology Treatment for 12 Months Using MRI. CLINICAL OPTOMETRY 2024; 16:35-44. [PMID: 38351972 PMCID: PMC10863466 DOI: 10.2147/opto.s448815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024]
Abstract
Purpose To investigate changes in peripheral eye length (PEL) in myopic children undergoing orthokeratology (Ortho-K) treatment for 12 months using MRI. The results were compared to single vision spectacle wearers (SVS). Patients and Methods A total of 70 children with myopia (aged 8-9 years old) were recruited. A total of 45 children were fitted with Ortho-K, and 25 were fitted with SVS. The PEL and axial length (AL) were measured by using MRI 3-Tesla, whereas central and peripheral refraction (PR) measurements were conducted at ±30 degrees horizontally with nasal (N) and temporal (T) intervals of 10°, 20°, and 30° and with an open field autorefractometer (WAM-5500 Grand Seiko). All the measurements were conducted at the baseline and 12 months. Results The MRI analysis indicates that at 12 months, the SVS group showed more elongation of the PEL and AL at all eccentricities than the Ortho-K group did (p < 0.05). The Ortho-K group only showed significant PEL elongation beyond 20 degrees at N20, N30, T20, and T30 (p < 0.05); however, a significant reduction in the AL was detected in the center AL, N10, and T10 (p < 0.05). All eccentricities in the relative PR of the Ortho-K group were significantly more myopic than at the baseline (p < 0.05), whereas in the SVS group, all eccentricities in the relative PR were shown to be significantly more hyperopic than at the baseline (p < 0.05). The PEL and PR showed negative correlations at 12 months in the Ortho-K group. Conclusion MRI analysis can be utilized to describe changes in PEL in myopic children. It appears that as myopia progressed in Ortho-K lens wearers, the PEL increased by a greater amount than the AL did; thus, the retina was reshaped to become increasingly oblate and to display peripheral myopic defocus.
Collapse
Affiliation(s)
- Yu Chen Low
- Optometry and Vision Science Program and Research Centre for Community Health (REACH), Faculty of Health Sciences, UKM Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Bariah Mohd-Ali
- Optometry and Vision Science Program and Research Centre for Community Health (REACH), Faculty of Health Sciences, UKM Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Mizhanim Mohamad Shahimin
- Optometry and Vision Science Program and Research Centre for Community Health (REACH), Faculty of Health Sciences, UKM Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Norhani Mohidin
- Optometry and Vision Science Program and Research Centre for Community Health (REACH), Faculty of Health Sciences, UKM Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Hamzaini Abdul-Hamid
- Department of Radiology, Faculty of Medicine, UKM, Cheras, Kuala Lumpur, Malaysia
| | - Siti Salasiah Mokri
- Department of Electrical, Electronics and Systems, Faculty of Engineering and Built, UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Mohd-Ali B, Chen LY, Shahimin MM, Arif N, Abdul Hamid H, Wan Abdul Halim WH, Mokri SS, Baseri Huddin A, Mohidin N. Ocular dimensions by three-dimensional magnetic resonance imaging in emmetropic versus myopic school children. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2022; 11:64-70. [PMID: 37641786 PMCID: PMC10445301 DOI: 10.51329/mehdiophthal1447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 08/31/2023]
Abstract
Background Magnetic resonance imaging (MRI) has been used to investigate eye shapes; however, reports involving children are scarce. This study aimed to determine ocular dimensions, and their correlations with refractive error, using three-dimensional MRI in emmetropic versus myopic children. Methods Healthy school children aged < 10 years were invited to take part in this cross-sectional study. Refraction and best-corrected distance visual acuity (BCDVA) were determined using cycloplegic refraction and a logarithm of the minimum angle of resolution (logMAR) chart, respectively. All children underwent MRI using a 3-Tesla whole-body scanner. Quantitative eyeball measurements included the longitudinal axial length (LAL), horizontal width (HW), and vertical height (VH) along the cardinal axes. Correlation analysis was used to determine the association between the level of refractive error and the eyeball dimensions. Results A total of 70 eyes from 70 children (35 male, 35 female) with a mean (standard deviation [SD]) age of 8.38 (0.49) years were included and analyzed. Mean (SD) refraction (spherical equivalent, SEQ) and BCDVA were -2.55 (1.45) D and -0.01 (0.06) logMAR, respectively. Ocular dimensions were greater in myopes than in emmetropes (all P < 0.05), with no significant differences according to sex. Mean (SD) ocular dimensions were LAL 24.07 (0.91) mm, HW 23.41 (0.82) mm, and VH 23.70 (0.88) mm for myopes, and LAL 22.69 (0.55) mm, HW 22.65 (0.63) mm, and VH 22.94 (0.69) mm for emmetropes. Significant correlations were noted between SEQ and ocular dimensions, with a greater change in LAL (0.46 mm/D, P < 0.001) than in VH (0.27 mm/D, P < 0.001) and HW (0.22 mm/D, P = 0.001). Conclusions Myopic eyeballs are larger than those with emmetropia. The eyeball elongates as myopia increases, with the greatest change in LAL, the least in HW, and an intermediate change in VH. These changes manifest in both sexes at a young age and low level of myopia. These data may serve as a reference for monitoring the development of refractive error in young Malaysian children of Chinese origin.
Collapse
Affiliation(s)
- Bariah Mohd-Ali
- Optometry and Vision Science Program, Research Centre for Community Health, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Low Yu Chen
- Optometry and Vision Science Program, Research Centre for Community Health, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mizhanim Mohamad Shahimin
- Optometry and Vision Science Program, Research Centre for Community Health, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norlaili Arif
- Optometry and Vision Science Program, Research Centre for Community Health, Faculty of Health Science, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamzaini Abdul Hamid
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Siti Salasiah Mokri
- Deparment of Electric, Electronics and System, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aqilah Baseri Huddin
- Deparment of Electric, Electronics and System, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norhani Mohidin
- Optometry Centre, Faculty of Health Science, Universiti Teknologi MARA, Kuala Lumpur, Malaysia
| |
Collapse
|