1
|
Kang J, Zheng Z, Li X, Huang T, Rong D, Liu X, Qin M, Wang Y, Kong X, Song J, Lv C, Pan X. Midazolam exhibits antitumour and enhances the efficiency of Anti-PD-1 immunotherapy in hepatocellular carcinoma. Cancer Cell Int 2022; 22:312. [PMID: 36224624 PMCID: PMC9555186 DOI: 10.1186/s12935-022-02735-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Midazolam (MDZ) is an anaesthetic that is widely used for anxiolysis and sedation. More recently, MDZ has also been described to be related to the outcome of various types of carcinomas. However, how MDZ influences the progression of hepatocellular carcinoma (HCC) and its effects on the biological function and tumour immune microenvironment of this type of tumour remain unknown. METHODS The effects of MDZ on the proliferation, invasion, and migration of HCC cell lines were examined in vitro using the Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and wound healing assays. Additionally, western blotting was employed to confirm that PD-L1 was expressed. Chromatin immunoprecipitation-seq (ChIP-seq) analysis was used to pinpoint the transcriptional regulation regions of NF-κB and programmed death-ligand 1 (PD-L1). A C57BL/6 mouse model was used to produce subcutaneous HCC tumors in order to evaluate the in vivo performance of MDZ. Mass spectrometry was also used to assess changes in the tumour immunological microenvironment following MDZ injection. RESULTS The HCC-LM3 and Hep-3B cell lines' proliferation, invasion, and migration were controlled by MDZ, according to the results of the CCK8, EdU, Transwell, and wound healing assays. PD-L1 expression was shown by ChIP-seq analysis to be boosted by NF-κB, and by Western blotting analysis, it was shown that MDZ downregulated the expression of NF-κB. Additionally, in vivo tests revealed that intraperitoneal MDZ injections reduced HCC tumor development and enhanced the effectiveness of anti-PD-1 therapy. The CD45+ immune cell proportions were higher in the MDZ group than in the PBS group, according to the mass spectrometry results. Injection of MDZ resulted in a decrease in the proportions of CD4+ T cells, CD8+ T cells, natural killer (NK) cells, monocytes, Tregs, and M2 macrophages and a rise in the proportion of dendritic cells. Additionally, the concentrations of the cytokines IFN-g and TNF-a were noticeably raised whereas the concentrations of the CD8+ T-cell fatigue markers ICOS, TIGIT, and TIM3 were noticeably lowered. CONCLUSION According to this study, MDZ inhibited the progression of HCC by inhibiting the NF-κB pathway and reducing the exhaustion of CD8+ T cells. In clinical practice, MDZ combined with anti-PD-1 therapy might contribute to synergistically improving the antitumor efficacy of HCC treatment.
Collapse
Affiliation(s)
- Junwei Kang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiying Zheng
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tian Huang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xinyang Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miaomiao Qin
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuliang Wang
- Basic Medical School, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, Key Laboratory of Liver Transplantation, NHC Key Laboratory of Living Donor Liver Transplantation, The First Affiliated Hospital of Nanjing Medical University, Chinese Academy of Medical Sciences, Nanjing, China.
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Xiongxiong Pan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Wu KC, Liao KS, Yeh LR, Wang YK. Drug Repurposing: The Mechanisms and Signaling Pathways of Anti-Cancer Effects of Anesthetics. Biomedicines 2022; 10:biomedicines10071589. [PMID: 35884894 PMCID: PMC9312706 DOI: 10.3390/biomedicines10071589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. There are only limited treatment strategies that can be applied to treat cancer, including surgical resection, chemotherapy, and radiotherapy, but these have only limited effectiveness. Developing a new drug for cancer therapy is protracted, costly, and inefficient. Recently, drug repurposing has become a rising research field to provide new meaning for an old drug. By searching a drug repurposing database ReDO_DB, a brief list of anesthetic/sedative drugs, such as haloperidol, ketamine, lidocaine, midazolam, propofol, and valproic acid, are shown to possess anti-cancer properties. Therefore, in the current review, we will provide a general overview of the anti-cancer mechanisms of these anesthetic/sedative drugs and explore the potential underlying signaling pathways and clinical application of these drugs applied individually or in combination with other anti-cancer agents.
Collapse
Affiliation(s)
- King-Chuen Wu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Kai-Sheng Liao
- Department of Pathology, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Li-Ren Yeh
- Department of Anesthesiology, E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
- Department of Medical Imaging and Radiology, Shu-Zen College of Medicine and Management, Kaohsiung 82144, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: (L.-R.Y.); (Y.-K.W.); Tel.: +886-7-6150-022 (L.-R.Y.); +886-6-2353-535 (ext. 5333) (Y.-K.W.)
| |
Collapse
|
3
|
Shen Q, Xia Y, Yang L, Wang B, Peng J. Midazolam Suppresses Hepatocellular Carcinoma Cell Metastasis and Enhances Apoptosis by Elevating miR-217. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2813521. [PMID: 35309842 PMCID: PMC8926537 DOI: 10.1155/2022/2813521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is a significant cause of human death in the world. Recently, it is found that midazolam can modulate miRs to participate in HCC progression. This research project was designed to elucidate the impacts of midazolam and miR-217 on HCC cell metastasis and apoptosis. Methods Human HCC cell strains (Hep3B and SK-HEP-1) were selected and intervened by midazolam at different concentrations in our research. miR-217-inhibitor intervened in the two HCC cell strains to observe the alterations of cell migration, invasiveness, and apoptosis. The miR-217 level in HCC cells was identified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results As midazolam concentration was elevated, Hep3B and SK-HEP-1 viabilities were more obviously suppressed. The 10 μg/mL concentration was selected for analysis since Hep3B and SK-HEP-1 had an IC50 of 10.57 μg/mL and 9.35 μg/m, respectively. The qRT-PCR results showed the decreased of miR-217 in HCC cells, which was enhanced notably by midazolam intervention. Compared with the blank group, the invasiveness and migration (Transwell assay) of miR-217-inhibitor-transfected HCC cells were distinctly enhanced and the apoptosis rate (flow cytometry) was noticeably reduced. Conclusion Midazolam can upregulate miR-217 in HCC cells, thus inhibiting HCC cell metastasis and apoptosis.
Collapse
Affiliation(s)
- Qian Shen
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Yanqiong Xia
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Leilei Yang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Bo Wang
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| | - Jian Peng
- Department of Anesthesiology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei 430060, China
| |
Collapse
|
4
|
Anticancer Effects of Midazolam on Lung and Breast Cancers by Inhibiting Cell Proliferation and Epithelial-Mesenchymal Transition. Life (Basel) 2021; 11:life11121396. [PMID: 34947927 PMCID: PMC8703822 DOI: 10.3390/life11121396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/15/2023] Open
Abstract
Despite improvements in cancer treatments resulting in higher survival rates, the proliferation and metastasis of tumors still raise new questions in cancer therapy. Therefore, new drugs and strategies are still needed. Midazolam (MDZ) is a common sedative drug acting through the γ-aminobutyric acid receptor in the central nervous system and also binds to the peripheral benzodiazepine receptor (PBR) in peripheral tissues. Previous studies have shown that MDZ inhibits cancer cell proliferation but increases cancer cell apoptosis through different mechanisms. In this study, we investigated the possible anticancer mechanisms of MDZ on different cancer cell types. MDZ inhibited transforming growth factor β (TGF-β)-induced cancer cell proliferation of both A549 and MCF-7 cells. MDZ also inhibited TGF-β-induced cell migration, invasion, epithelial-mesenchymal-transition, and Smad phosphorylation in both cancer cell lines. Inhibition of PBR by PK11195 rescued the MDZ-inhibited cell proliferation, suggesting that MDZ worked through PBR to inhibit TGF-β pathway. Furthermore, MDZ inhibited proliferation, migration, invasion and levels of mesenchymal proteins in MDA-MD-231 triple-negative breast cancer cells. Together, MDZ inhibits cancer cell proliferation both in epithelial and mesenchymal types and EMT, indicating an important role for MDZ as a candidate to treat lung and breast cancers.
Collapse
|
5
|
Lorazepam induces acinar cells apoptosis of rat parotid glands. Saudi Dent J 2020; 32:276-282. [PMID: 32874067 PMCID: PMC7452012 DOI: 10.1016/j.sdentj.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/20/2022] Open
|
6
|
Hidaka Y, Chiba-Ohkuma R, Karakida T, Onuma K, Yamamoto R, Fujii-Abe K, Saito MM, Yamakoshi Y, Kawahara H. Combined Effect of Midazolam and Bone Morphogenetic Protein-2 for Differentiation Induction from C2C12 Myoblast Cells to Osteoblasts. Pharmaceutics 2020; 12:pharmaceutics12030218. [PMID: 32131534 PMCID: PMC7150865 DOI: 10.3390/pharmaceutics12030218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/01/2022] Open
Abstract
In drug repositioning research, a new concept in drug discovery and new therapeutic opportunities have been identified for existing drugs. Midazolam (MDZ) is an anesthetic inducer used for general anesthesia. Here, we demonstrate the combined effects of bone morphogenetic protein-2 (BMP-2) and MDZ on osteogenic differentiation. An immortalized mouse myoblast cell line (C2C12 cell) was cultured in the combination of BMP-2 and MDZ (BMP-2+MDZ). The differentiation and signal transduction of C2C12 cells into osteoblasts were investigated at biological, immunohistochemical, and genetic cell levels. Mineralized nodules formed in C2C12 cells were characterized at the crystal engineering level. BMP-2+MDZ treatment decreased the myotube cell formation of C2C12 cells, and enhanced alkaline phosphatase activity and expression levels of osteoblastic differentiation marker genes. The precipitated nodules consisted of randomly oriented hydroxyapatite nanorods and nanoparticles. BMP-2+MDZ treatment reduced the immunostaining for both α1 and γ2 subunits antigens on the gamma-aminobutyric acid type A (GABAA) receptor in C2C12 cells, but enhanced that for BMP signal transducers. Our investigation showed that BMP-2+MDZ has a strong ability to induce the differentiation of C2C12 cells into osteoblasts and has the potential for drug repositioning in bone regeneration.
Collapse
Affiliation(s)
- Yukihiko Hidaka
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Kazuo Onuma
- National Institute of Advanced Industrial Science & Technology, Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan;
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Keiko Fujii-Abe
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| | - Mari M. Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (R.C.-O.); (T.K.); (R.Y.); (M.M.S.)
- Correspondence: ; Tel.: +81-45-580-8479; Fax: +81-45-573-9599
| | - Hiroshi Kawahara
- Department of Dental Anesthesiology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (Y.H.); (K.F.-A.); (H.K.)
| |
Collapse
|
7
|
Mu YF, Chen YH, Chang MM, Chen YC, Huang BM. Arsenic compounds induce apoptosis through caspase pathway activation in MA-10 Leydig tumor cells. Oncol Lett 2019; 18:944-954. [PMID: 31289573 DOI: 10.3892/ol.2019.10386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
The incidence of testicular cancer is increasing worldwide. Leydig cell tumors represent one type of sex cord-stromal testis malignancy, which tend to respond unfavorably to chemotherapies. Identifying more efficient treatment strategies is therefore crucial for patients. The present study aimed to investigate the apoptotic effects of arsenic compounds and their underlying mechanisms. The results indicated that sodium arsenite and dimethylarsenic acid induced apoptosis of the murine Leydig tumor cell line, MA-10. These apoptotic effects were characterized morphologically by membrane blebbing and cell detachment assays, biochemically using a cell viability assay, and cytologically by flow cytometry analysis. Western blotting demonstrated that caspases-3, -8 and -9, and poly(ADP-ribose) polymerase protein levels were increased compared with untreated MA-10 cells; however, the caspase inhibitor, Z-VAD-fmk, reversed these effects. In conclusion, the present study has shown that sodium arsenite and dimethylarsenic acid may activate the intrinsic and extrinsic caspase pathways, and induce MA-10 cell apoptosis. These results suggest that sodium arsenite and dimethylarsenic acid may represent novel approaches to treat clinically unmanageable forms of testicular cancer.
Collapse
Affiliation(s)
- Yi-Fen Mu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ying-Hui Chen
- Department of Anesthesia, Chi-Mei Medical Center, Liouying, Tainan 73657, Taiwan, R.O.C
| | - Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yung-Chia Chen
- Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
8
|
Potential for Drug Repositioning of Midazolam for Dentin Regeneration. Int J Mol Sci 2019; 20:ijms20030670. [PMID: 30720745 PMCID: PMC6387224 DOI: 10.3390/ijms20030670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 01/03/2023] Open
Abstract
Drug repositioning promises the advantages of reducing costs and expediting approval schedules. An induction of the anesthetic and sedative drug; midazolam (MDZ), regulates inhibitory neurotransmitters in the vertebrate nervous system. In this study we show the potential for drug repositioning of MDZ for dentin regeneration. A porcine dental pulp-derived cell line (PPU-7) that we established was cultured in MDZ-only, the combination of MDZ with bone morphogenetic protein 2, and the combination of MDZ with transforming growth factor-beta 1. The differentiation of PPU-7 into odontoblasts was investigated at the cell biological and genetic level. Mineralized nodules formed in PPU-7 were characterized at the protein and crystal engineering levels. The MDZ-only treatment enhanced the alkaline phosphatase activity and mRNA levels of odontoblast differentiation marker genes, and precipitated nodule formation containing a dentin-specific protein (dentin phosphoprotein). The nodules consisted of randomly oriented hydroxyapatite nanorods and nanoparticles. The morphology, orientation, and chemical composition of the hydroxyapatite crystals were similar to those of hydroxyapatite that had transformed from amorphous calcium phosphate nanoparticles, as well as the hydroxyapatite in human molar dentin. Our investigation showed that a combination of MDZ and PPU-7 cells possesses high potential of drug repositioning for dentin regeneration.
Collapse
|
9
|
Kang FC, Wang SC, Chang MM, Pan BS, Wong KL, Cheng KS, So EC, Huang BM. Midazolam activates caspase, MAPKs and endoplasmic reticulum stress pathways, and inhibits cell cycle and Akt pathway, to induce apoptosis in TM3 mouse Leydig progenitor cells. Onco Targets Ther 2018; 11:1475-1490. [PMID: 29588601 PMCID: PMC5858853 DOI: 10.2147/ott.s154442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Midazolam (MDZ) has powerful hypnosis, amnesia, anti-anxiety and anticonvulsant effects. Studies have shown that prenatally developmental toxicity of diazepam can be observed in many organs/tissues. However, it remains elusive in male reproductive system. Materials and methods TM3 mouse Leydig progenitor cell line was used to determine whether MDZ has any unfavorable effects. Results Midazolam significantly decreased cell viability in dose- and time-dependent manners in TM3 cells. In flow cytometry analysis, midazolam significantly increased subG1 phase cell numbers, and annexin V/PI double staining assay further confirmed that MDZ induced apoptosis in TM3 cells. Moreover, MDZ significantly induced the expression of caspase-8 and -3 proteins and the phosphorylation of JNK, ERK1/2 and p38. Besides, MDZ didn’t activate Akt pathway in TM3 cells. Furthermore, the expressions of p-EIF2α, ATF4, ATF3 and CHOP were induced by midazolam, suggesting that midazolam could induce apoptosis through endoplasmic reticulum (ER) stress in TM3 cells. Additionally, the expressions of cyclin A, cyclin B and CDK1 were inhibited by midazolam through the regulation of p53 in TM3 cells, indicating that midazolam could regulate cell cycle to induce apoptosis. Conclusion Midazolam could activate caspase, MAPKs and ER stress pathways and impede Akt pathway and cell cycle to induce apoptosis in TM3 mouse Leydig progenitor cells.
Collapse
Affiliation(s)
- Fu-Chi Kang
- Department of Anesthesia, Chi Mei Medical Center, Chiali, Tainan, Taiwan, Republic of China
| | - Shu-Chun Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Kar-Lok Wong
- Department of Anesthesia, China Medical University, Taichung, Taiwan, Republic of China
| | - Ka-Shun Cheng
- Department of Anesthesia, China Medical University, Taichung, Taiwan, Republic of China.,Department of Anesthesiology, The Qingdao University Yuhuangding Hospital, Yantai, Shandong, China
| | - Edmund Cheung So
- Department of Anesthesia, China Medical University, Taichung, Taiwan, Republic of China.,Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan, Republic of China
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
10
|
Jiao J, Wang Y, Sun X, Jiang X. Midazolam induces A549 cell apoptosis in vitro via the miR-520d-5p/STAT3 pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1365-1373. [PMID: 31938232 PMCID: PMC6958164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 06/10/2023]
Abstract
A novel microRNA, miR-520d-5p, can inhibit proliferation of osteosarcoma cells, but the biological role of miR-520d-5p in lung cancer is notknown. Midazolam can induce apoptosis in many kinds of cancer cells, but there are no reportson its use in lung cancer. We investigated the roles of midazolam and miR-520d-5p in apoptosis induction in a non-small cell lung cancer (NSCLC) cell line (A549). The expression of miR-520d-5p, a signal transducer and activator of transcription 3 (STAT3) and its related protein were measured by quantitative real-time PCR and Western blot. Apoptosis of the NSCLC cells in response to midazolam was determined by MTT assay, flow cytometry, and Western blot. Midazolam significantly induced A549 cell apoptosis and modulated expression of Bcl-2, Bax, and Caspase-3. Additionally, midazolam regulated STAT3 expression in A549 cells, and the siRNA inhibited STAT3 levels, highlighting their roles in the regulation of STAT3 signaling. Midazolam combined with the miR-520d-5p mimic and inhibitor, regulated STAT3 expression and its signaling pathway. Midazolam combined with the miR-520d-5p mimic significantly induced A549 cell apoptosis. Thus, midazolam can induce apoptosis of A549 cells by targeting STAT3 via miR-520d-5p. These findings suggest that midazolam might be a putative anti-cancer approach for NSCLC therapy.
Collapse
Affiliation(s)
- Jinghua Jiao
- Department of Anesthesiology, The First Affiliated Hospital, China Medical UniversityShenyang, China
- Department of Anesthesiology, Central Hospital, Shenyang Medical CollegeShenyang, China
| | - Yuheng Wang
- Department of Anesthesiology, Central Hospital, Shenyang Medical CollegeShenyang, China
| | - Xiaofeng Sun
- Department of Anesthesiology, Central Hospital, Shenyang Medical CollegeShenyang, China
| | - Xiaojing Jiang
- Department of Anesthesiology, The First Affiliated Hospital, China Medical UniversityShenyang, China
| |
Collapse
|
11
|
Tabeshmehr P, Husnain HK, Salmannejad M, Sani M, Hosseini SM, Khorraminejad Shirazi MH. Nicorandil potentiates sodium butyrate induced preconditioning of neurons and enhances their survival upon subsequent treatment with H 2O 2. Transl Neurodegener 2017; 6:29. [PMID: 29093814 PMCID: PMC5662071 DOI: 10.1186/s40035-017-0097-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/02/2017] [Indexed: 12/27/2022] Open
Abstract
Background Extensive loss of donor neural stem cell (NSCs) due to ischemic stress and low rate of differentiation at the site of cell graft are two of the major issues that hamper optimal outcome in NSCs transplantation studies. Given that histone deacetylases (HDACs) modulate various cellular processes by deacetylating histones and non-histone proteins, we hypothesized that combined treatment with small molecules, sodium butyrate (NaB; a known HDAC inhibitor) and nicorandil, will enhance the rate neuronal differentiation of NSCs besides their preconditioning to resist oxidative stress. Methods NSCs derived from 14-day old Sprague Dawley rat ganglion eminence were characterized for tri-lineage differentiation. Treatment with 1 mM NaB significantly changed their culture characteristics while continuous treatment for 10 days enhanced their neural differentiation. NaB treatment also preconditioned the cells for their resistance to oxidative stress. Results The highest rate of neural differentiation and preconditioning effect was achieved when the NSCs were treated concomitantly with NaB and nicorandil. Cell proliferation assay showed that concomitant treatment with NaB and nicorandil retarded their rate of proliferation. Conclusion These data conclude that preconditioning of NSCs with NaB and nicorandil effectively enhances their differentiation capacity besides preconditioning the cells to support their survival under ischemic conditions. Electronic supplementary material The online version of this article (10.1186/s40035-017-0097-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parisa Tabeshmehr
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahin Salmannejad
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mojtaba Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran.,Stem Cell Laboratory, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Khorraminejad Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.,Cell & Molecular Medicine Student Research Group, Medical Faculty, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Insights into the Roles of Midazolam in Cancer Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3826506. [PMID: 28706559 PMCID: PMC5494572 DOI: 10.1155/2017/3826506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/24/2022]
Abstract
With its high worldwide mortality and morbidity, cancer has gained increasing attention and novel anticancer drugs have become the focus for cancer research. Recently, studies have shown that most anesthetic agents can influence the activity of tumor cells. Midazolam is a γ-aminobutyric acid A (GABAA) receptor agonist, used widely for preoperative sedation and as an adjuvant during neuraxial blockade. Some studies have indicated the potential for midazolam as a novel therapeutic cancer drug; however, the mechanism by which midazolam affects cancer cells needs to be clarified. This systematic review aims to summarize the progress in assessing the molecular mechanism of midazolam as an anticancer agent.
Collapse
|