1
|
Ali R, Qamar W, Kalam MA, Binkhathlan Z. Soluplus-TPGS Mixed Micelles as a Delivery System for Brigatinib: Characterization and In Vitro Evaluation. ACS OMEGA 2024; 9:41830-41840. [PMID: 39398132 PMCID: PMC11465523 DOI: 10.1021/acsomega.4c06264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
Lung cancer is a major public health concern, with a high incidence and fatality rate. Its treatment is very difficult, as it is mostly diagnosed in advanced stages. Non-small cell lung carcinoma (NSCLC) is the major form of lung carcinoma that persists. Brigatinib (BGT), a powerful small-molecule tyrosine kinase inhibitor, has demonstrated significant therapeutic potential in the treatment of NSCLC with anaplastic lymphoma kinase (ALK) mutations. However, the therapeutic applicability of BGT is hampered by its low solubility and bioavailability. In this study, we developed a mixed micelle system comprising Soluplus and TPGS loaded with BGT. BGT was encapsulated into the mixed micelles using various combinations of Soluplus and TPGS, with encapsulation efficiency (EE%) ranging from 52.43 ± 1.07 to 97.88 ± 2.25%. The dynamic light scattering data showed that the mixed micelles ranged in size from 75.7 ± 0.46 to 204.3 ± 5.40 nm. The selected mixed micelles (F6) showed approximately 38% BGT release in the first 2 h, and subsequently, within 72 h, the release was 94.50 ± 5.90%. The NMR experiment confirmed the formation of micelles. Additionally, the mixed micelles showed significantly higher cellular uptake (p < 0.05) and increased cytotoxicity (p < 0.05) as compared to the free BGT. Specifically, the obtained IC50 values for BGT-loaded Soluplus-TPGS mixed micelles and free BGT were 22.59 ± 6.07 and 61.45 ± 6.35 μg/mL, respectively. The results of the in vitro stability experiment showed that the selected mixed micelle (F6) was stable at both room temperature and 4 °C, with only minor changes in size and PDI. Our results indicate great potential for the developed Soluplus-TPGS mixed micelles as a delivery system for BGT.
Collapse
Affiliation(s)
- Raisuddin Ali
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ziyad Binkhathlan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Zhou Y, Kang J, Lu X. Targeting Solvent-Front Mutations for Kinase Drug Discovery: From Structural Basis to Design Strategies. J Med Chem 2024; 67:14702-14722. [PMID: 39143914 DOI: 10.1021/acs.jmedchem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Solvent-front mutations have emerged as a common mechanism leading to acquired resistance to kinase inhibitors, representing a major challenge in the clinic. Several new-generation kinase inhibitors targeting solvent-front mutations have either been approved or advanced to clinical trials. However, there remains a need to discover effective, new-generation inhibitors. In this Perspective, we systematically summarize the general types of solvent-front mutations across the kinome and describe the development of inhibitors targeting some key solvent-front mutations. Additionally, we highlight the challenges and opportunities for the next generation of kinase inhibitors directed toward overcoming solvent-front mutations.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Jibo Kang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 510632, China
| |
Collapse
|
3
|
Kim RS, Nguyen MK, Card KR, Shields CL. Utility of systemic brigatinib therapy in tumour recurrence of choroid metastasis from non-small cell lung carcinoma. CANADIAN JOURNAL OF OPHTHALMOLOGY 2024; 59:e397-e399. [PMID: 37236265 DOI: 10.1016/j.jcjo.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Rachel S Kim
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | - Michael K Nguyen
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | - Kevin R Card
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
| | - Carol L Shields
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
4
|
Poei D, Ali S, Ye S, Hsu R. ALK inhibitors in cancer: mechanisms of resistance and therapeutic management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:20. [PMID: 38835344 PMCID: PMC11149099 DOI: 10.20517/cdr.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified as potent oncogenic drivers in several malignancies, including non-small cell lung cancer (NSCLC). The discovery of ALK inhibition using a tyrosine kinase inhibitor (TKI) has dramatically improved the outcomes of patients with ALK-mutated NSCLC. However, the emergence of intrinsic and acquired resistance inevitably occurs with ALK TKI use. This review describes the molecular mechanisms of ALK TKI resistance and discusses management strategies to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Darin Poei
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sana Ali
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Shirley Ye
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Hsu
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Wang YT, Yang PC, Zhang JY, Sun JF. Synthetic Routes and Clinical Application of Representative Small-Molecule EGFR Inhibitors for Cancer Therapy. Molecules 2024; 29:1448. [PMID: 38611728 PMCID: PMC11012680 DOI: 10.3390/molecules29071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in cancer therapeutics, with small-molecule EGFR inhibitors emerging as significant agents in combating this disease. This review explores the synthesis and clinical utilization of EGFR inhibitors, starting with the indispensable role of EGFR in oncogenesis and emphasizing the intricate molecular aspects of the EGFR-signaling pathway. It subsequently provides information on the structural characteristics of representative small-molecule EGFR inhibitors in the clinic. The synthetic methods and associated challenges pertaining to these compounds are thoroughly examined, along with innovative strategies to overcome these obstacles. Furthermore, the review discusses the clinical applications of FDA-approved EGFR inhibitors such as erlotinib, gefitinib, afatinib, and osimertinib across various cancer types and their corresponding clinical outcomes. Additionally, it addresses the emergence of resistance mechanisms and potential counterstrategies. Taken together, this review aims to provide valuable insights for researchers, clinicians, and pharmaceutical scientists interested in comprehending the current landscape of small-molecule EGFR inhibitors.
Collapse
Affiliation(s)
- Ya-Tao Wang
- First People’s Hospital of Shangqiu, Shangqiu 476100, China
| | - Peng-Cheng Yang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China;
| | - Jing-Yi Zhang
- College of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China;
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China;
| |
Collapse
|
6
|
Guan J, Chuang TP, Vikström A, Palmer RH, Hallberg B. ALK F1174S mutation impairs ALK kinase activity in EML4-ALK variant 1 and sensitizes EML4-ALK variant 3 to crizotinib. Front Oncol 2024; 13:1281510. [PMID: 38264745 PMCID: PMC10803553 DOI: 10.3389/fonc.2023.1281510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Objective To assess the influence of F1174S mutation on kinase activity and drug sensitivity of the echinoderm microtubule-associated protein-like 4 (EML4) and anaplastic lymphoma kinase (ALK) fusion (EML4-ALK) variants 1 and 3. Methods We constructed mammalian expression plasmids of both wildtype and F1174 mutant EML4-ALK variants 1 and 3, and then characterized them with cell models by performing immunoblotting, neurite outgrowth assay, focus formation assay as well as protein stability assay. Drug sensitivity to ALK tyrosine kinase inhibitors was also compared between wildtype and F1174 mutant EML4-ALK fusions. In addition, we characterized the effect of different F1174 kinase domain mutations in the context of EML4-ALK fusions. Results In contrast to the oncogenic ALK-F1174S mutation that has been reported to be activating in the context of full-length ALK in neuroblastoma, EML4-ALK (F1174S) variant 1 exhibits impaired kinase activity leading to loss of oncogenicity. Furthermore, unlike the previously reported F1174C/L/V mutations, mutation of F1174 to S sensitizes EML4-ALK variants 3a and 3b to crizotinib. Conclusion These findings highlight the complexity of drug selection when treating patients harboring resistance mutations and suggest that the F1174S mutation in EML4-ALK variant 1 is likely not a potent oncogenic driver. Additional oncogenic driver or other resistance mechanisms should be considered in the case of EML4-ALK variant 1 with F1174S mutation.
Collapse
Affiliation(s)
- Jikui Guan
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Vikström
- Department of Pulmonary Medicine, Linköping University Hospital, Linköping, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Mesquita FP, Lima LB, da Silva EL, Souza PFN, de Moraes MEA, Burbano RMR, Montenegro RC. A Review on Anaplastic Lymphoma Kinase (ALK) Rearrangements and Mutations: Implications for Gastric Carcinogenesis and Target Therapy. Curr Protein Pept Sci 2024; 25:539-552. [PMID: 38424421 DOI: 10.2174/0113892037291318240130103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
Gastric adenocarcinoma is a complex disease with diverse genetic modifications, including Anaplastic Lymphoma Kinase (ALK) gene changes. The ALK gene is located on chromosome 2p23 and encodes a receptor tyrosine kinase that plays a crucial role in embryonic development and cellular differentiation. ALK alterations can result from gene fusion, mutation, amplification, or overexpression in gastric adenocarcinoma. Fusion occurs when the ALK gene fuses with another gene, resulting in a chimeric protein with constitutive kinase activity and promoting oncogenesis. ALK mutations are less common but can also result in the activation of ALK signaling pathways. Targeted therapies for ALK variations in gastric adenocarcinoma have been developed, including ALK inhibitors that have shown promising results in pre-clinical studies. Future studies are needed to elucidate the ALK role in gastric cancer and to identify predictive biomarkers to improve patient selection for targeted therapy. Overall, ALK alterations are a relevant biomarker for gastric adenocarcinoma treatment and targeted therapies for ALK may improve patients' overall survival.
Collapse
Affiliation(s)
- Felipe Pantoja Mesquita
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Luina Benevides Lima
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Emerson Lucena da Silva
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | - Pedro Filho Noronha Souza
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
| | | | - Rommel Mario Rodrigues Burbano
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém, Brazil
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém, Brazil
| | - Raquel Carvalho Montenegro
- Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, CE, 60430-275, Brazil
- Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil
| |
Collapse
|
8
|
Niu ZX, Wang YT, Lu N, Sun JF, Nie P, Herdewijn P. Advances of clinically approved small-molecule drugs for the treatment of non-small cell lung cancer. Eur J Med Chem 2023; 261:115868. [PMID: 37844346 DOI: 10.1016/j.ejmech.2023.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Lung cancer continues to pose a significant challenge as a prominent contributor to global cancer-related mortality. Despite the considerable strides made in therapeutic interventions within the past decade, a substantial population of patients diagnosed with non-small cell lung cancer (NSCLC) still face the grim reality of an incurable condition. In the realm of optimal management strategies for individuals afflicted with locally advanced, yet amenable to surgical resection, NSCLC, a therapeutic approach encompassing chemoradiation stands as a fundamental component. Significant strides have been made in the therapeutic landscape of NSCLC during the preceding two decades, facilitating an enhanced comprehension of the underlying disease biology, and mechanisms governing tumor progression, as well as advancements in early detection modalities and multimodal therapeutic interventions. Nevertheless, the overall rates of curative interventions and survival outcomes for NSCLC continue to exhibit a discouragingly low trajectory, particularly in the context of metastatic disease. Hence, the imperative for sustained research endeavors in the realm of novel pharmaceutical agents and combinatorial therapeutic approaches remains paramount, with the overarching objective of broadening the scope of clinical advantages conferred upon a wider demographic of patients, thereby fostering tangible improvements in outcomes pertaining to NSCLC. The primary objective of this review is to provide an all-encompassing examination encompassing the clinical application and synthetic routes of specific drugs, with the explicit aim of disseminating invaluable knowledge that can inform future research and development endeavors focused on NSCLC.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ya-Tao Wang
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China
| | - Nan Lu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
Ramazi S, Daddzadi M, Sahafnejad Z, Allahverdi A. Epigenetic regulation in lung cancer. MedComm (Beijing) 2023; 4:e401. [PMID: 37901797 PMCID: PMC10600507 DOI: 10.1002/mco2.401] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Lung cancer is indeed a major cause of cancer-related deaths worldwide. The development of tumors involves a complex interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, and microRNA expression, play a crucial role in this process. Changes in DNAm patterns can lead to the silencing of important genes involved in cellular functions, contributing to the development and progression of lung cancer. MicroRNAs and exosomes have also emerged as reliable biomarkers for lung cancer. They can provide valuable information about early diagnosis and treatment assessment. In particular, abnormal hypermethylation of gene promoters and its effects on tumorigenesis, as well as its roles in the Wnt signaling pathway, have been extensively studied. Epigenetic drugs have shown promise in the treatment of lung cancer. These drugs target the aberrant epigenetic modifications that are involved in the development and progression of the disease. Several factors have been identified as drug targets in non-small cell lung cancer. Recently, combination therapy has been discussed as a successful strategy for overcoming drug resistance. Overall, understanding the role of epigenetic mechanisms and their targeting through drugs is an important area of research in lung cancer treatment.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Meadeh Daddzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Sahafnejad
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
10
|
Gao H, Zhang JY, Zhao LJ, Guo YY. Synthesis and clinical application of small-molecule inhibitors and PROTACs of anaplastic lymphoma kinase. Bioorg Chem 2023; 140:106807. [PMID: 37651895 DOI: 10.1016/j.bioorg.2023.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Pharmacological interventions that specifically target protein products of oncogenes in tumors have surfaced as a propitious therapeutic approach. Among infrequent genetic alterations, rearrangements of the anaplastic lymphoma kinase (ALK) gene, typically involving a chromosome 2 inversion that culminates in a fusion with the echinoderm microtubule-associated protein like 4 (EML4), lead to anomalous expression and activation of ALK. The inhibition of autophosphorylation and subsequent blockade of signal transduction by ALK tyrosine kinase inhibitors (TKIs) has been observed to elicit anti-tumor effects. Currently, four generations of ALK-positive targeted drugs have been investigated, providing a promising outlook for patients. The aim of this review is to furnish a comprehensive survey of the synthesis and clinical application of prototypical small-molecule ALK inhibitors in both preclinical and clinical phases, offering guidance for further development of ALK inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing-Yi Zhang
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States; College of Chemistry and Chemical Engineering, Zhengzhou Normal University 450044, China.
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
11
|
Fukuda A, Yoshida T. Treatment of advanced ALK-rearranged NSCLC following second-generation ALK-TKI failure. Expert Rev Anticancer Ther 2023; 23:1157-1167. [PMID: 37772744 DOI: 10.1080/14737140.2023.2265566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK) gene rearrangement is detected in approximately 3-5% of non-small cell lung cancer (NSCLC) cases. Tyrosine kinase inhibitors (TKIs) targeting ALK rearrangement (ALK-TKIs) have shown significant efficacy and improved the survival of patients with NSCLC exhibiting ALK rearrangement. However, almost all patients exhibit disease progression during TKI therapy owing to resistance acquired through various molecular mechanisms, including both ALK-dependent and ALK-independent. AREAS COVERED Here, we review the mechanisms underlying resistance to second-generation ALK-TKIs, and the clinical management strategies following resistance in patients with ALK rearrangement-positive NSCLC. EXPERT OPINION Treatment strategies following the failure of second-generation ALK-TKIs failure should be based on resistant mechanisms. For patients with ALK mutations who exhibit resistance to second-generation ALK-TKIs, lorlatinib is the primary treatment option. However, the identification of resistance profiles of second-generation ALK-TKIs can aid in the selection of an appropriate treatment strategy. In cases of ALK-dependent resistance mutations, lorlatinib could be the first choice as it exhibits the broadest coverage of mutations that lead to resistance against second-generation ALK-TKIs, such as G1202R, and L1196M. In cases of no resistance mutations, atezolizumab, bevacizumab, and platinum-based chemotherapy could be the alternative treatment options.
Collapse
Affiliation(s)
- Akito Fukuda
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
12
|
Ando K, Manabe R, Kishino Y, Kusumoto S, Yamaoka T, Tanaka A, Ohmori T, Sagara H. Comparative Efficacy of ALK Inhibitors for Treatment-Naïve ALK-Positive Advanced Non-Small Cell Lung Cancer with Central Nervous System Metastasis: A Network Meta-Analysis. Int J Mol Sci 2023; 24:2242. [PMID: 36768562 PMCID: PMC9917367 DOI: 10.3390/ijms24032242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Central nervous system (CNS) metastases and acquired resistance complicate the treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung cancer (NSCLC). Thus, this review aimed to provide a comprehensive overview of brain metastasis, acquired resistance, and prospects for overcoming these challenges. A network meta-analysis of relevant phase III randomized controlled trials was performed to compare the efficacies of multiple ALK inhibitors by drug and generation in overall patients with ALK-p untreated advanced NSCLC and a subgroup of patients with CNS metastases. The primary endpoint was progression-free survival (PFS). Generation-specific comparison results showed that third-generation ALK inhibitors were significantly more effective than second-generation ALK inhibitors in prolonging the PFS of the subgroup of patients with CNS metastases. Drug-specific comparison results demonstrated that lorlatinib was the most effective in prolonging PFS, followed by brigatinib, alectinib, ensartinib, ceritinib, crizotinib, and chemotherapy. While lorlatinib was superior to brigatinib for PFS in the overall patient population, no significant difference between the two was found in the subgroup of patients with CNS metastases. These results can serve as a foundation for basic, clinical, and translational research and guide clinical oncologists in developing individualized treatment strategies for patients with ALK-p, ALK inhibitor-naive advanced NSCLC.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Ryo Manabe
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Yasunari Kishino
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Sojiro Kusumoto
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Toshimitsu Yamaoka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Advanced Cancer Translational Research Institute, Hatanodai Campus, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Akihiko Tanaka
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| | - Tohru Ohmori
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
- Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respirology and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan
| |
Collapse
|
13
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
14
|
Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, Bruno DS, Chang JY, Chirieac LR, D'Amico TA, DeCamp M, Dilling TJ, Dowell J, Gettinger S, Grotz TE, Gubens MA, Hegde A, Lackner RP, Lanuti M, Lin J, Loo BW, Lovly CM, Maldonado F, Massarelli E, Morgensztern D, Ng T, Otterson GA, Pacheco JM, Patel SP, Riely GJ, Riess J, Schild SE, Shapiro TA, Singh AP, Stevenson J, Tam A, Tanvetyanon T, Yanagawa J, Yang SC, Yau E, Gregory K, Hughes M. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20:497-530. [PMID: 35545176 DOI: 10.6004/jnccn.2022.0025] [Citation(s) in RCA: 644] [Impact Index Per Article: 322.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Non-Small Cell Lung Cancer (NSCLC) provide recommended management for patients with NSCLC, including diagnosis, primary treatment, surveillance for relapse, and subsequent treatment. Patients with metastatic lung cancer who are eligible for targeted therapies or immunotherapies are now surviving longer. This selection from the NCCN Guidelines for NSCLC focuses on targeted therapies for patients with metastatic NSCLC and actionable mutations.
Collapse
Affiliation(s)
| | - Douglas E Wood
- 2Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | | | | | - Ankit Bharat
- 6Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | - Debora S Bruno
- 7Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Joe Y Chang
- 8The University of Texas MD Anderson Cancer Center
| | | | | | | | | | | | | | | | | | | | | | | | - Jules Lin
- 20University of Michigan Rogel Cancer Center
| | | | | | | | | | - Daniel Morgensztern
- 24Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | - Thomas Ng
- 25The University of Tennessee Health Science Center
| | - Gregory A Otterson
- 26The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | | | | | | | | | - Aditi P Singh
- 30Abramson Cancer Center at the University of Pennsylvania
| | - James Stevenson
- 7Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Alda Tam
- 8The University of Texas MD Anderson Cancer Center
| | | | | | - Stephen C Yang
- 1The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | - Edwin Yau
- 32Roswell Park Comprehensive Cancer Center; and
| | | | | |
Collapse
|
15
|
王 可, 李 娟, 孙 建, 李 力, 张 西, 张 建, 余 敏, 叶 贤, 张 明, 张 瑜, 姚 文, 黄 媚. [Recommendations from Experts in the Management of Adverse Reactions
to ALK Inhibitors (2021 Version)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:815-828. [PMID: 34670356 PMCID: PMC8695243 DOI: 10.3779/j.issn.1009-3419.2021.102.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Anaplastic lymphoma kinase (ALK) fusion gene, as a tumor driver gene, was crucial for the occurrence and development of non-small cell lung cancer (NSCLC). Recently, targeted ALK fusion gene has become the main treatment method for ALK-positive NSCLC. The first and second generation ALK inhibitors (ALKi), such as crizotinib, ceritinib, alectinib and ensartinib have been approved in China. However, there was no guidance for the management of ALKi adverse reactions. Therefore, this "Recommendations from experts in the management of adverse reactions to ALK inhibitors (2021 version)" has been summarized, led by Lung Cancer Professional Committee of Sichuan Cancer Society and Sichuan Medical Quality Control Center for Tumor Diseases, to provide practical and feasible strategies for clinical ALKi management specification of adverse reactions.
.
Collapse
Affiliation(s)
- 可 王
- 610041 成都,四川大学华西医院呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - 娟 李
- 610041 成都,四川省肿瘤医院肿瘤内科Department of Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
| | - 建国 孙
- 400037 重庆,陆军军医大学新桥医院肿瘤科Department of Oncology, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| | - 力 李
- 400042 重庆,陆军特色医学中心(大坪医院)呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, Army Special Medical Center (Daping Hospital), Chongqing 400042, China
| | - 西 张
- 610000 成都,成都市第三人民医院肿瘤科Department of Oncology, Chengdu Third People's Hospital, Chengdu 610000, China
| | - 建勇 张
- 563000 遵义,呼吸与危重症医学科,遵义医科大学附属医院Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - 敏 余
- 610041 成都,四川大学华西医院胸部肿瘤科Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - 贤伟 叶
- 550002 贵阳,贵州省人民医院呼吸与危重症医学科Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - 明 张
- 650118 昆明,云南省肿瘤医院放射治疗科Department of Radiation Therapy, Yunnan Cancer Hospital, Kunming 650118, China
| | - 瑜 张
- 550002 贵阳,贵州省人民医院肿瘤科Department of Oncology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - 文秀 姚
- 610041 成都,四川省肿瘤医院肿瘤内科Department of Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
| | - 媚娟 黄
- 610041 成都,四川大学华西医院胸部肿瘤科Department of Thoracic Oncology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Pan Y, Deng C, Qiu Z, Cao C, Wu F. The Resistance Mechanisms and Treatment Strategies for ALK-Rearranged Non-Small Cell Lung Cancer. Front Oncol 2021; 11:713530. [PMID: 34660278 PMCID: PMC8517331 DOI: 10.3389/fonc.2021.713530] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target for non-small-cell lung cancer (NSCLC). The use of tyrosine kinase inhibitors (TKIs) has led to significantly improved survival benefits. However, the clinical benefits of targeting ALK using TKIs are limited due to the emergence of drug resistance. The landscape of resistance mechanisms and treatment decisions has become increasingly complex. Therefore, continued research into new drugs and combinatorial therapies is required to improve outcomes in NSCLC. In this review, we explore the resistance mechanisms of ALK TKIs in advanced NSCLC in order to provide a theoretical basis and research ideas for solving the problem of ALK drug resistance.
Collapse
Affiliation(s)
- Yue Pan
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Deng
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Qiu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Fang Wu
- Department of Oncology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Wang B, Guo H, Xu H, Yu H, Chen Y, Zhao G. Research Progress and Challenges in the Treatment of Central Nervous System Metastasis of Non-Small Cell Lung Cancer. Cells 2021; 10:2620. [PMID: 34685600 PMCID: PMC8533870 DOI: 10.3390/cells10102620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 12/26/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors and has high morbidity and mortality rates. Central nervous system (CNS) metastasis is one of the most frequent complications in patients with NSCLC and seriously affects the quality of life (QOL) and overall survival (OS) of patients, with a median OS of untreated patients of only 1-3 months. There are various treatment methods for NSCLC CNS metastasis, including surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, which do not meet the requirements of patients in terms of improving OS and QOL. There are still many problems in the treatment of NSCLC CNS metastasis that need to be solved urgently. This review summarizes the research progress in the treatment of NSCLC CNS metastasis to provide a reference for clinical practice.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China;
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130021, China; (B.W.); (H.X.); (H.Y.)
| |
Collapse
|
18
|
Yao B, Han X, Pang L, Xu C, Liu S, Cheng X, Chen J. Acquired ALK Resistance Mutations Identified from Liquid Biopsy in an ALK-Rearranged Squamous Cell Lung Cancer Patient Treated with Sequential ALK TKI Therapy: A Case Report. Onco Targets Ther 2021; 14:4329-4333. [PMID: 34376997 PMCID: PMC8349191 DOI: 10.2147/ott.s315832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangement is extremely rare in lung squamous cell carcinoma (LSCC), and it remains controversial as to whether LSCC patients with ALK rearrangement can benefit from ALK tyrosine kinase inhibitors (TKIs). Here, we report an LSCC patient with ALK rearrangement who was treated with sequential ALK TKI therapies and experienced a clinical benefit of 35 months. Although the use of ALK TKIs showed clinical benefits, targeted next-generation sequencing (NGS) for dynamic monitoring of circulating tumor DNA (ctDNA) from patient plasma revealed the accumulation of ALK resistance mutations, which could provide valuable information in designing the treatment strategy. Our study highlights the importance of dynamic monitoring of ctDNA using NGS to discover tumor evolution to guide treatment decision-making and provides meaningful insights into the potential treatment options for ALK-positive LSCC patients.
Collapse
Affiliation(s)
- Bin Yao
- Department of Radiotherapy and Chemotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xue Han
- Department of Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Linrong Pang
- Department of Radiotherapy and Chemotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Caihong Xu
- Department of Radiotherapy and Chemotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Sisi Liu
- Department of Research and Development, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, People's Republic of China
| | - Xiaochun Cheng
- Department of Radiotherapy and Chemotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Jun Chen
- Department of Radiotherapy and Chemotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
19
|
Ando K, Manabe R, Kishino Y, Kusumoto S, Yamaoka T, Tanaka A, Ohmori T, Sagara H. Comparative Efficacy and Safety of Lorlatinib and Alectinib for ALK-Rearrangement Positive Advanced Non-Small Cell Lung Cancer in Asian and Non-Asian Patients: A Systematic Review and Network Meta-Analysis. Cancers (Basel) 2021; 13:cancers13153704. [PMID: 34359604 PMCID: PMC8345181 DOI: 10.3390/cancers13153704] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The treatment of anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) advanced non-small cell lung cancer (NSCLC) remains a challenge. We compared the safety and efficacy of lorlatinib and alectinib in patients with ALK-p ALK-inhibitor‒naïve advanced NSCLC (in overall participants and in the Asian and non-Asian subgroups). The results showed that in the overall participant group, the efficacy of lorlatinib and alectinib was not significantly different in terms of progression-free survival (PFS) and overall survival (OS). Although in the Asian subgroup, PFS was not significantly different upon treatment with lorlatinib or alectinib, in the non-Asian subgroup, PFS was significantly better in response to lorlatinib than with alectinib. Grade 3 or higher adverse events in the overall participant group were significantly more frequent with lorlatinib than with alectinib. These results will provide valuable information that would enable the improvement of treatment strategies for ALK-p ALK-inhibitor‒naïve advanced NSCLC. Abstract To date, there have been no head-to-head randomized controlled trials (RCTs) comparing the safety and efficacy of lorlatinib and alectinib in anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p) ALK-inhibitor‒naïve advanced non-small cell lung cancer (NSCLC). We performed a network meta-analysis comparing six treatment arms (lorlatinib, brigatinib, alectinib, ceritinib, crizotinib, and platinum-based chemotherapy) in overall participants and in Asian and non-Asian subgroups. Primary endpoints were progression-free survival (PFS), overall survival (OS), and grade 3 or higher adverse events (G3-AEs). There were no significant differences between lorlatinib and alectinib in overall participants for both PFS (hazard ratio [HR], 0.742; 95% credible interval [CrI], 0.466–1.180) and OS (HR, 1.180; 95% CrI, 0.590–2.354). In the Asian subgroup, there were no significant differences in PFS between lorlatinib and alectinib (HR, 1.423; 95% CrI, 0.748–2.708); however, in the non-Asian subgroup, PFS was significantly better with lorlatinib than with alectinib (HR, 0.388; 95% CrI, 0.195–0.769). The incidence of G3-AEs in overall participants was significantly higher with lorlatinib than with alectinib (risk ratio, 1.918; 95% CrI, 1.486–2.475). These results provide valuable information regarding the safety and efficacy of lorlatinib in ALK-p ALK-inhibitor‒naïve advanced NSCLC. Larger head-to-head RCTs are needed to validate the study results.
Collapse
Affiliation(s)
- Koichi Ando
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
- Division of Internal Medicine, Showa University Dental Hospital Medical Clinic, Senzoku Campus, Showa University, 2-1-1 Kita-senzoku, Ohta-ku, Tokyo 145-8515, Japan
- Correspondence: ; Tel.: +81-3-3784-8532
| | - Ryo Manabe
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Yasunari Kishino
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Sojiro Kusumoto
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Toshimitsu Yamaoka
- Advanced Cancer Translational Research Institute, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan;
| | - Akihiko Tanaka
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| | - Tohru Ohmori
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
- Department of Medicine, Division of Respiratory Medicine, Tokyo Metropolitan Health and Hospitals Corporation, Ebara Hospital, 4-5-10 Higashiyukigaya, Ohta-ku, Tokyo 145-0065, Japan
| | - Hironori Sagara
- Division of Respiratory Medicine and Allergology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (R.M.); (Y.K.); (S.K.); (A.T.); (T.O.); (H.S.)
| |
Collapse
|
20
|
Carcereny E, Fernández-Nistal A, López A, Montoto C, Naves A, Segú-Vergés C, Coma M, Jorba G, Oliva B, Mas JM. Head to head evaluation of second generation ALK inhibitors brigatinib and alectinib as first-line treatment for ALK+ NSCLC using an in silico systems biology-based approach. Oncotarget 2021; 12:316-332. [PMID: 33659043 PMCID: PMC7899557 DOI: 10.18632/oncotarget.27875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Around 3-7% of patients with non-small cell lung cancer (NSCLC), which represent 85% of diagnosed lung cancers, have a rearrangement in the ALK gene that produces an abnormal activity of the ALK protein cell signaling pathway. The developed ALK tyrosine kinase inhibitors (TKIs), such as crizotinib, ceritinib, alectinib, brigatinib and lorlatinb present good performance treating ALK+ NSCLC, although all patients invariably develop resistance due to ALK secondary mutations or bypass mechanisms. In the present study, we compare the potential differences between brigatinib and alectinib's mechanisms of action as first-line treatment for ALK+ NSCLC in a systems biology-based in silico setting. Therapeutic performance mapping system (TPMS) technology was used to characterize the mechanisms of action of brigatinib and alectinib and the impact of potential resistances and drug interferences with concomitant treatments. The analyses indicate that brigatinib and alectinib affect cell growth, apoptosis and immune evasion through ALK inhibition. However, brigatinib seems to achieve a more diverse downstream effect due to a broader cancer-related kinase target spectrum. Brigatinib also shows a robust effect over invasiveness and central nervous system metastasis-related mechanisms, whereas alectinib seems to have a greater impact on the immune evasion mechanism. Based on this in silico head to head study, we conclude that brigatinib shows a predicted efficacy similar to alectinib and could be a good candidate in a first-line setting against ALK+ NSCLC. Future investigation involving clinical studies will be needed to confirm these findings. These in silico systems biology-based models could be applied for exploring other unanswered questions.
Collapse
Affiliation(s)
- Enric Carcereny
- Catalan Institute of Oncology B-ARGO Group, Hospital Germans Trias i Pujol, Badalona, Spain
| | | | | | | | | | | | | | - Guillem Jorba
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
21
|
Heredia D, Barrón F, Cardona AF, Campos S, Rodriguez-Cid J, Martinez-Barrera L, Alatorre J, Salinas MÁ, Lara-Mejia L, Flores-Estrada D, Arrieta O. Brigatinib in ALK-positive non-small cell lung cancer: real-world data in the Latin American population (Bri-world extend CLICaP). Future Oncol 2020; 17:169-181. [PMID: 32986959 DOI: 10.2217/fon-2020-0747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Brigatinib has demonstrated its efficacy as first-line therapy and in further lines for ALK-positive non-small cell lung cancer (NSCLC) patients; however, real-world data in Latin America are scarce. Methods: From January 2018 to March 2020, 46 patients with advanced ALK-positive NSCLC received brigatinib as second or further line of therapy in Mexico and Colombia. The primary end point was progression-free survival (PFS); secondary end point was time to treatment discontinuation (TTD). Results: At a median follow-up of 9.3 months, the median PFS was 15.2 months (95% CI: 11.6-18.8), and TTD was 18.46 months (95% CI: 9.54-27.38). The estimated overall survival at 12 months was 80%. Safety profile was consistent with previously published data. Conclusion: Brigatinib is an effective treatment for previously treated ALK-positive NSCLC patients in a real-world setting.
Collapse
Affiliation(s)
- David Heredia
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México 14080
| | - Feliciano Barrón
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México 14080
| | - Andrés F Cardona
- Clinical & Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Molecular Oncology & Biology Systems Group (G-FOX), Universidad El Bosque, Bogotá, Colombia
| | - Saul Campos
- Centro Oncológico Estatal ISSEMyM, Toluca Estado de México, México 50180
| | | | | | - Jorge Alatorre
- National Institute of Respiratory Diseases, México City, México 14080
| | - Miguel Ángel Salinas
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México 14080
| | - Luis Lara-Mejia
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México 14080
| | - Diana Flores-Estrada
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México 14080
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México 14080
| |
Collapse
|
22
|
Alshahrani SM, Alfadhel MM, Abujheisha KY, Almutairy BK, Alalaiwe AS, Alshetaili AS, Aldawsari MF, Anwer MK, Shakeel F. Solubility determination, computational modeling, Hansen solubility parameters and apparent thermodynamic analysis of brigatinib in (ethanol + water) mixtures. Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The solubility and various thermodynamic parameters of an antitumor drug brigatinib (BRN) in various ethanol (EtOH) + water (H2O) mixtures were determined in this study. The mole fraction solubility (x
e) of BRN in various (EtOH + H2O) mixtures including pure EtOH and pure H2O was obtained at T = 298.2–323.2 K and p = 0.1 MPa by adopting a saturation shake flask method. Hansen solubility parameters (HSPs) of BRN, pure EtOH, pure H2O and (EtOH + H2O) mixtures free of BRN were also computed. The x
e values of BRN were correlated using Van’t Hoff, Apelblat, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff models with mean errors of <2.0%. The maximum and minimum x
e value of BRN was obtained in pure EtOH (1.43 × 10−2 at T = 323.2 K) and pure H2O (3.08 × 10−6 at T = 298.2 K), respectively. The HSP of BRN was also found more closed with that of pure EtOH. The x
e value of BRN was obtained as increasing significantly with the rise in temperature and increase in EtOH mass fraction in all (EtOH + H2O) mixtures including pure EtOH and pure H2O. The data of apparent thermodynamic analysis showed an endothermic and entropy-driven dissolution of BRN in all (EtOH + H2O) mixtures including pure EtOH and pure H2O.
Collapse
Affiliation(s)
- Saad M. Alshahrani
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Munerah M. Alfadhel
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Khalil Y.R. Abujheisha
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Bjad K. Almutairy
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Ahmed S. Alalaiwe
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Abdullah S. Alshetaili
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics , College of Pharmacy, Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
23
|
Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD. Challenges and Opportunities in Cancer Drug Resistance. Chem Rev 2020; 121:3297-3351. [PMID: 32692162 DOI: 10.1021/acs.chemrev.0c00383] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.
Collapse
Affiliation(s)
- Richard A Ward
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stephen Fawell
- Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nicolas Floc'h
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | | | | | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| |
Collapse
|
24
|
Brigatinib and Alectinib for ALK Rearrangement-Positive Advanced Non-Small Cell Lung Cancer With or Without Central Nervous System Metastasis: A Systematic Review and Network Meta-Analysis. Cancers (Basel) 2020; 12:cancers12040942. [PMID: 32290309 PMCID: PMC7226463 DOI: 10.3390/cancers12040942] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
To date, no head-to-head trials have compared the efficacy of brigatinib and alectinib against anaplastic lymphoma kinase (ALK) rearrangement-positive (ALK-p), ALK-inhibitor-naïve, advanced non-small cell lung cancer (NSCLC) with central nervous system (CNS) metastasis. We conducted an indirect treatment comparison (ITC) between brigatinib and alectinib, with crizotinib as a common comparator, using a Bayesian model with non-informative prior distribution and assessed the between-study heterogeneity of the studies. The primary efficacy endpoint was progression-free survival (PFS), and efficacy was ranked using the surface under the cumulative ranking (SUCRA) curve values. ITC analysis showed that there were no significant differences in PFS between the brigatinib and alectinib arms. However, the SUCRA values revealed that alectinib ranked the highest by efficacy in the overall patient population, whereas brigatinib ranked the highest by efficacy in the CNS metastasis sub-group. Although there were no significant differences in the incidence of G3–5 adverse events between the brigatinib and alectinib arms in the overall patient population, the data were deemed insufficient for the CNS metastasis sub-group analysis. This study provides critical information to clinicians regarding the efficacy of brigatinib for ALK-p, ALK-inhibitor-naïve, advanced NSCLC patients, with and without CNS metastasis. Larger randomized, controlled trials are warranted to confirm our results.
Collapse
|
25
|
Sun N, Ren C, Kong Y, Zhong H, Chen J, Li Y, Zhang J, Zhou Y, Qiu X, Lin H, Song X, Yang X, Jiang B. Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur J Med Chem 2020; 193:112190. [PMID: 32179332 DOI: 10.1016/j.ejmech.2020.112190] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 11/30/2022]
Abstract
EML4-ALK and NPM-ALK fusion proteins possess constitutively activated ALK (anaplastic lymphoma kinase) activity, which in turn leads to the development of non-small cell lung cancer and anaplastic large-cell lymphomas (ALCLs). FDA-approved ALK inhibitor drugs cause significant cancer regression. However, drug resistance eventually occurs and it becomes a big obstacle in clinic. Novel proteolysis targeting chimera (PROTAC) technology platform provides a potential therapeutic strategy for drug resistance. Herein, we designed and synthesized a series of ALK PROTACs based on Brigatinib and VHL-1 conjunction, and screened SIAIS117 as the best degrader which not only blocked the growth of SR and H2228 cancer cell lines, but also degraded ALK protein. In addition, SIAIS117 also showed much better growth inhibition effect than Brigatinib on 293T cell line that exogenously expressed G1202R-resistant ALK proteins. Furthermore, it also degraded G1202R mutant ALK protein in vitro. At last, it has the potentially anti-proliferation ability of small cell lung cancer. Thus, we have successfully generated the degrader SIAIS117 that can potentially overcome resistance in cancer targeted therapy.
Collapse
Affiliation(s)
- Ning Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Chaowei Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Ying Kong
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Hui Zhong
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jinju Chen
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Yan Li
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Jianshui Zhang
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Yuedong Zhou
- Jing Medicine Technology (Shanghai), Ltd., Y building, 230 Haike Road, Shanghai, 201210, China
| | - Xing Qiu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Haifan Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; Yale Stem Cell Center, Yale University, New Haven, CT, 06511, USA.
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China; CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Hamilton G, Hochmair MJ. An evaluation of brigatinib as a promising treatment option for non-small cell lung cancer. Expert Opin Pharmacother 2019; 20:1551-1561. [PMID: 31328968 DOI: 10.1080/14656566.2019.1643839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Brigatinib is a second-line inhibitor for the treatment of rearranged anaplastic lymphoma kinase (ALK) in lung cancer patients which has significant activity against brain metastases. This tyrosine kinase inhibitor (TKI) overcomes a wide range of ALK mutations which confer therapeutic resistance and is increasingly applied in first-line therapy due to improved benefit for patients compared to crizotinib, the current standard of care. Areas covered: The authors review the development and characteristics of brigatinib and discuss the optimal clinical use and sequence of the application of ALK inhibitors in patients progressing under therapy. Expert opinion: ALK-rearranged NSCLC can be treated with a broad range of approved and novel inhibitors at various stages of therapy, including the second-line therapeutic brigatinib. Besides this TKI, the second-line ALK inhibitors alectinib and ceritinib, as well as the third-line lorlatinib are approved for the treatment of ALK-positive NSCLC patients. The main challenge is to find sequences and combinations of ALK inhibitors which provide the best benefit for the patients.
Collapse
Affiliation(s)
- G Hamilton
- Department of Surgery, Medical University of Vienna , Vienna , Austria
| | - M J Hochmair
- Respiratory Oncology Unit, Otto Wagner Hospital , Vienna , Austria
| |
Collapse
|
27
|
Terzyan SS, Shen T, Liu X, Huang Q, Teng P, Zhou M, Hilberg F, Cai J, Mooers BHM, Wu J. Structural basis of resistance of mutant RET protein-tyrosine kinase to its inhibitors nintedanib and vandetanib. J Biol Chem 2019; 294:10428-10437. [PMID: 31118272 DOI: 10.1074/jbc.ra119.007682] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Indexed: 01/17/2023] Open
Abstract
RET is a transmembrane growth factor receptor. Aberrantly activated RET is found in several types of human cancer and is a target for treating RET aberration-associated cancer. Multiple clinically relevant RET protein-tyrosine kinase inhibitors (TKIs) have been identified, but how TKIs bind to RET is unknown except for vandetanib. Nintedanib is a RET TKI that inhibits the vandetanib-resistant RET(G810A) mutant. Here, we determined the X-ray co-crystal structure of RET kinase domain-nintedanib complex to 1.87 Å resolution and a RET(G810A) kinase domain crystal structure to 1.99 Å resolution. We also identified a vandetanib-resistant RET(L881V) mutation previously found in familial medullary thyroid carcinoma. Drug-sensitivity profiling of RET(L881V) revealed that it remains sensitive to nintedanib. The RET-nintedanib co-crystal structure disclosed that Leu-730 in RET engages in hydrophobic interactions with the piperazine, anilino, and phenyl groups of nintedanib, providing a structural basis for explaining that the p.L730V mutation identified in nine independently isolated cell lines resistant to nintedanib. Comparisons of RET-nintedanib, RET(G810A), and RET-vandetanib crystal structures suggested that the solvent-front Ala-810 makes hydrophobic contacts with a methyl group and aniline in nintedanib and blocks water access to two oxygen atoms of vandetanib, resulting in an energetic penalty for burying polar groups. Of note, even though the p.L881V mutation did not affect sensitivity to nintedanib, RET(L881V) was resistant to nintedanib analogs lacking a phenyl group. These results provide structural insights into resistance of RET mutants against the TKIs nintedanib and vandetanib.
Collapse
Affiliation(s)
- Simon S Terzyan
- From the Departments of Biochemistry and Molecular Biology and.,the Laboratory of Biomolecular Structure and Function, and
| | - Tao Shen
- Pathology.,the Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Xuan Liu
- Pathology.,the Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Qingling Huang
- the Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | - Peng Teng
- the Department of Chemistry, University of South Florida, Tampa, Florida 33620, and
| | - Mi Zhou
- the Department of Chemistry, University of South Florida, Tampa, Florida 33620, and
| | - Frank Hilberg
- the Department of Pharmacology, Boehringer Ingelheim, 1121 Vienna, Austria
| | - Jianfeng Cai
- the Department of Chemistry, University of South Florida, Tampa, Florida 33620, and
| | - Blaine H M Mooers
- From the Departments of Biochemistry and Molecular Biology and .,the Laboratory of Biomolecular Structure and Function, and.,the Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jie Wu
- Pathology, .,the Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.,the Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| |
Collapse
|
28
|
Brigatinib: New-generation ALK inhibitor for nonsmall cell lung cancer. Curr Probl Cancer 2019; 43:100477. [PMID: 31109722 DOI: 10.1016/j.currproblcancer.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022]
Abstract
Lung cancer, specifically nonsmall cell lung cancer (NSCLC) is the leading cause of death around the world. First-line therapies for metastatic NSCLC such as crizotinib, a tyrosine kinase inhibitor (TKI), have developed resistance due to a rearrangement of the anaplastic lymphoma kinase (ALK) gene. Brigatinib, approved in May 2016, is an ALK inhibitor specifically indicated for ALK-positive metastatic NSCLC in patients who have progressed on or resistant to crizotinib therapy. In several clinical trials, brigatinib has exhibited significant improvement in progression-free survival in patients that have experienced resistance to crizotinib therapy. The optimal dose of brigatinib was found to be 180 mg once daily and demonstrated greater efficacy as compared to its 90 mg once daily dose. Brigatinib was also found to be well tolerated. Although more studies are needed, the current data from these studies indicate brigatinib may be the most favorable therapeutic approach to treat NSCLC ALK-positive patients.
Collapse
|
29
|
Zhang C, Leighl NB, Wu YL, Zhong WZ. Emerging therapies for non-small cell lung cancer. J Hematol Oncol 2019; 12:45. [PMID: 31023335 PMCID: PMC6482588 DOI: 10.1186/s13045-019-0731-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/05/2019] [Indexed: 02/08/2023] Open
Abstract
Recent advances in the field of novel anticancer agents prolong patients' survival and show a promising future. Tyrosine kinase inhibitors and immunotherapy for lung cancer are the two major areas undergoing rapid development. Although increasing novel anticancer agents were innovated, how to translate and optimize these novel agents into clinical practice remains to be explored. Besides, toxicities and availability of these drugs in specific regions should also be considered during clinical determination. Herein, we summarize emerging agents including tyrosine kinase inhibitors, checkpoint inhibitors, and other potential immunotherapy such as chimeric antigen receptor T cell for non-small cell lung cancer attempting to provide insights and perspectives of the future in anticancer treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, People's Republic of China
| | | | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
30
|
Blidner RA, Haynes BC, Hyter S, Schmitt S, Pessetto ZY, Godwin AK, Su D, Hurban P, van Kempen LC, Aguirre ML, Gokul S, Cardwell RD, Latham GJ. Design, Optimization, and Multisite Evaluation of a Targeted Next-Generation Sequencing Assay System for Chimeric RNAs from Gene Fusions and Exon-Skipping Events in Non-Small Cell Lung Cancer. J Mol Diagn 2019; 21:352-365. [PMID: 30529127 PMCID: PMC7057224 DOI: 10.1016/j.jmoldx.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Lung cancer accounts for approximately 14% of all newly diagnosed cancers and is the leading cause of cancer-related deaths. Chimeric RNA resulting from gene fusions (RNA fusions) and other RNA splicing errors are driver events and clinically addressable targets for non-small cell lung cancer (NSCLC). The reliable assessment of these RNA markers by next-generation sequencing requires integrated reagents, protocols, and interpretive software that can harmonize procedures and ensure consistent results across laboratories. We describe the development and verification of a system for targeted RNA sequencing for the analysis of challenging, low-input solid tumor biopsies that includes reagents for nucleic acid quantification and library preparation, run controls, and companion bioinformatics software. Assay development reconciled sequence discrepancies in public databases, created predictive formalin-fixed, paraffin-embedded RNA qualification metrics, and eliminated read misidentification attributable to index hopping events on the next-generation sequencing flow cell. The optimized and standardized system was analytically verified internally and in a multiphase study conducted at five independent laboratories. The results show accurate, reproducible, and sensitive detection of RNA fusions, alternative splicing events, and other expression markers of NSCLC. This comprehensive approach, combining sample quantification, quality control, library preparation, and interpretive bioinformatics software, may accelerate the routine implementation of targeted RNA sequencing of formalin-fixed, paraffin-embedded samples relevant to NSCLC.
Collapse
Affiliation(s)
| | | | - Stephen Hyter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Sarah Schmitt
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ziyan Y Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, Kansas
| | - Dan Su
- Q Squared Solutions Expression Analysis LLC, Morrisville, North Carolina
| | - Patrick Hurban
- Q Squared Solutions Expression Analysis LLC, Morrisville, North Carolina
| | - Léon C van Kempen
- The Molecular Pathology Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maria L Aguirre
- The Molecular Pathology Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
31
|
Ding M, Deng L, Yu R, Lu D, Bai Y, Wu X, Shao YW, Yang Y. Case Report: Temporal Heterogeneity of ALK Activating Mutations in Sequential ALK TKI-Treated Non-Small-Cell Lung Cancer Revealed Using NGS-Based Liquid Biopsy. Clin Lung Cancer 2019; 20:e229-e232. [PMID: 30948231 DOI: 10.1016/j.cllc.2019.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/15/2019] [Accepted: 02/18/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Meijuan Ding
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Lili Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Ruoying Yu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, Ontario, Canada
| | - Dan Lu
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yun Bai
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xue Wu
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, Ontario, Canada
| | - Yang W Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc, Toronto, Ontario, Canada; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Yang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.
| |
Collapse
|
32
|
Targeting ALK in Cancer: Therapeutic Potential of Proapoptotic Peptides. Cancers (Basel) 2019; 11:cancers11030275. [PMID: 30813562 PMCID: PMC6468335 DOI: 10.3390/cancers11030275] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 01/30/2023] Open
Abstract
ALK is a receptor tyrosine kinase, associated with many tumor types as diverse as anaplastic large cell lymphomas, inflammatory myofibroblastic tumors, breast and renal cell carcinomas, non-small cell lung cancer, neuroblastomas, and more. This makes ALK an attractive target for cancer therapy. Since ALK–driven tumors are dependent for their proliferation on the constitutively activated ALK kinase, a number of tyrosine kinase inhibitors have been developed to block tumor growth. While some inhibitors are under investigation in clinical trials, others are now approved for treatment, notably in ALK-positive lung cancer. Their efficacy is remarkable, however limited in time, as the tumors escape and become resistant to the treatment through different mechanisms. Hence, there is a pressing need to target ALK-dependent tumors by other therapeutic strategies, and possibly use them in combination with kinase inhibitors. In this review we will focus on the therapeutic potential of proapoptotic ALK-derived peptides based on the dependence receptor properties of ALK. We will also try to make a non-exhaustive list of several alternative treatments targeting ALK-dependent and independent signaling pathways.
Collapse
|
33
|
Ali R, Arshad J, Palacio S, Mudad R. Brigatinib for ALK-positive metastatic non-small-cell lung cancer: design, development and place in therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:569-580. [PMID: 30804663 PMCID: PMC6372006 DOI: 10.2147/dddt.s147499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the benefits of first and second generation anaplastic lymphoma kinase (ALK) inhibitors in the management of ALK-rearranged advanced non-small-cell lung cancer (NSCLC), the development of acquired resistance poses an ongoing dilemma. Brigatinib has demonstrated a wider spectrum of preclinical activity against crizotinib-resistant ALK mutant advanced NSCLC. The current review narrates a brief history of tyrosine kinases, the development and clinical background of brigatinib (including its pharmacology and molecular structure) and its use in ALK-positive NSCLC.
Collapse
Affiliation(s)
- Robert Ali
- Department of Medicine, Division of Oncology, Jackson Memorial Hospital, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Centre, Miami, FL 33131, USA,
| | - Junaid Arshad
- Department of Medicine, Division of Oncology, Jackson Memorial Hospital, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Centre, Miami, FL 33131, USA,
| | - Sofia Palacio
- Department of Medicine, Division of Oncology, Jackson Memorial Hospital, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Centre, Miami, FL 33131, USA,
| | - Raja Mudad
- Department of Medicine, Division of Oncology, University of Miami, Miller School of Medicine, Sylvester Comprehensive Cancer Centre, Miami, FL 33136, USA,
| |
Collapse
|
34
|
Chan HT, Chin YM, Low SK. The Roles of Common Variation and Somatic Mutation in Cancer Pharmacogenomics. Oncol Ther 2019; 7:1-32. [PMID: 32700193 PMCID: PMC7359987 DOI: 10.1007/s40487-018-0090-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer pharmacogenomics is the science concerned with understanding genetic alterations and its effects on the pharmacokinetics and pharmacodynamics of anti-cancer drugs, with the aim to provide cancer patients with the precise medication that will achieve a good response and cause low/no incidence of adverse events. Advances in biotechnology and bioinformatics have enabled genomic research to evolve from the evaluation of alterations at the single-gene level to studies on the whole-genome scale using large-scale genotyping and next generation sequencing techniques. International collaborative efforts have resulted in the construction of databases to curate the identified genetic alterations that are clinically significant, and these are currently utilized in clinical sequencing and liquid biopsy screening/monitoring. Furthermore, countless clinical studies have accumulated sufficient evidence to match cancer patients to therapies by utilizing the information of clinical-relevant alterations. In this review we summarize the importance of germline alterations that act as predictive biomarkers for drug-induced toxicity and drug response as well as somatic mutations in cancer cells that function as drug targets. The integration of genomics into the medical field has transformed the era of cancer therapy from one-size-fits-all to cancer precision medicine.
Collapse
Affiliation(s)
- Hiu Ting Chan
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoon Ming Chin
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew-Kee Low
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
35
|
Bedi S, Khan SA, AbuKhader MM, Alam P, Siddiqui NA, Husain A. A comprehensive review on Brigatinib - A wonder drug for targeted cancer therapy in non-small cell lung cancer. Saudi Pharm J 2018; 26:755-763. [PMID: 30202213 PMCID: PMC6128722 DOI: 10.1016/j.jsps.2018.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/18/2018] [Indexed: 12/24/2022] Open
Abstract
The mortality rate in patients suffering from non-small cell lung cancer (NSCLC) is quite high. This type of cancer mainly occurs due to rearrangements in the anaplastic lymphoma kinase (ALK) gene which leads to form an oncogene of fused gene NPM-ALK. Brigatinib is recently approved by FDA in April 2017 as a potent tyrosine kinase inhibitor (TKI) for the NSCLC therapy. In the present scenario, it is no less than a wonder drug because it is indicated for the treatment of advanced stages of metastatic ALK positive NSCLC, a fatal disease to overcome the resistance of various other ALK inhibitors such as crizotinib, ceritinib and alectinib. In addition to ALK, it is also active against multiple types of kinases such as ROS1, Insulin like growth factor-1Receptor and EGFR. It can be synthesized by using N-[2-methoxy-4-[4-(dimethylamino) piperidin-1-yl] aniline] guanidine and 2,4,5-trichloropyrimidine respectively in two different ways. Its structure consists of mainly dimethylphosphine oxide group which is responsible for its pharmacological activity. It is active against various cell lines such as HCC78, H2228, H23, H358, H838, U937, HepG2 and Karpas- 299. Results of ALTA (ALK in Lung Cancer Trial of AP26113) phase ½ trial shows that 90 mg of brigatinib for 7 days and then 180 mg for next days is effective in the treatment of NSCLC. Brigatinib has been shown to have favorable risk benefit profile and is a safer drug than the available cytotoxic chemotherapeutic agents. In comparison to other FDA approved drugs for the same condition, it causes fewer minor adverse reactions which can be easily managed either by changing the dose or by providing good supportive care. This article is intended to provide readers with an overview of chemistry, pharmacokinetic, pharmacodynamic and safety profile of brigatinib, which addresses an unmet medical need.
Collapse
Key Words
- ALCL, anaplastic extensive cell lymphoma
- ALK inhibitors
- ALK, anaplastic lymphoma kinase
- ALTA-1L, ALK in lung cancer trial of Brigatinib in1st Line
- BCRP, breast cancer resistance protein
- Brigatinib
- DMPO, dimethyl phosphine oxide
- EGFR, epidermal growth factor receptor
- EML4, echinoderm microtubule associated protein
- FDA, Food and Drug Administration
- FLT3, fem like tyrosine kinase-3
- Kinase
- LCC, Large Cell Carcinoma
- Lung cancer
- Lymphoma
- MIC, minimum inhibitory concentration
- NPM, nucleophosmin
- NSCLC, non-small cell lung cancer
- ORR, objective response rate
- P-gp, P-glycoprotein
- SAR, structure activity relationship
- TKI’s, tyrosine kinase inhibitors
Collapse
Affiliation(s)
- Silky Bedi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shah A. Khan
- Department of Pharmacy, Oman Medical College, Muscat, Oman
| | | | - Perwez Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nasir A. Siddiqui
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
36
|
Akamine T, Toyokawa G, Tagawa T, Seto T. Spotlight on lorlatinib and its potential in the treatment of NSCLC: the evidence to date. Onco Targets Ther 2018; 11:5093-5101. [PMID: 30174447 PMCID: PMC6110295 DOI: 10.2147/ott.s165511] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The identification of anaplastic lymphoma kinase (ALK), an oncogenetic driver mutation, in lung cancer has paved the way for a new era in the treatment of non-small cell lung cancer (NSCLC). Targeting ALK using tyrosine kinase inhibitors (TKI) has dramatically improved the prognosis of patients with ALK-rearranged NSCLC. However, most patients relapse on ALK-TKI therapy within a few years because of acquired resistance. One mechanism of acquiring resistance is a second mutation on the ALK gene, and the representative mutation is L1996M in the gatekeeper residue. In particular, the solvent-front ALK G1202R mutation is the common cause of resistance against first- and second-generation ALK-TKIs. Another major concern regarding ALK-TKI is metastasis to the central nervous system, commonly observed in patients relapsing after ALK-TKI therapy. The next-generation ALK inhibitor lorlatinib (PF-06463922) has therefore been developed to inhibit resistant ALK mutations, including ALK G1202R, and to penetrate the blood–brain barrier. In a Phase I/II trial, the safety and efficacy of lorlatinib were demonstrated in patients with advanced ALK-positive NSCLC, most of whom had central nervous system metastases and had previous ALK-TKI treatment. In this review, we discuss the structure, pharmacodynamics, and pharmacokinetics of lorlatinib and compare its characteristics with those of other ALK inhibitors. Furthermore, clinical trials for lorlatinib are summarized, and future perspectives in the management of patients with ALK-rearranged NSCLC are discussed.
Collapse
Affiliation(s)
- Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan,
| | - Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan,
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan,
| | - Takashi Seto
- Department of Thoracic Oncology, National Kyushu Cancer Center, Minami-ku, Fukuoka, Japan
| |
Collapse
|
37
|
Liu X, Shen T, Mooers BHM, Hilberg F, Wu J. Drug resistance profiles of mutations in the RET kinase domain. Br J Pharmacol 2018; 175:3504-3515. [PMID: 29908090 DOI: 10.1111/bph.14395] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Alterations in the tyrosine kinase enzyme RET are found in thyroid and lung cancer. While RET TK inhibitors (TKIs) are used to treat thyroid cancer and are in clinical trials for RET fusion-positive non-small cell lung cancer, the impact of mutations in the RET kinase domain on drug sensitivity is largely uncharacterized. EXPERIMENTAL APPROACH We identified and analysed mutations in the RET kinase domain that conferred resistance to the TKIs cabozantinib, lenvatinib, vandetanib and nintedanib using RET kinase-dependent BaF3/KIF5B-RET (BaF3/KR) cells. We also examined the sensitivity of RET (M918T), a RET mutation prevalent in aggressive multiple endocrine neoplasia type 2B, to these TKIs in the context of BaF3/KR cells. KEY RESULTS Fourteen mutations were analysed. Pan resistance to the four TKIs was found in six RET kinase domain mutations (L730I, V738A, V804L/M, Y806N, G810S). Seven RET kinase domain mutations (L730V, E732K, A807V, G810A, V871I, M918T, F998V) displayed selective resistance to one or more of these drugs. L730I/V and G810A/S had different drug resistance profiles. V871I, M918T and F998V mutations are located at distant sites away from the TKI binding pocket. CONCLUSIONS AND IMPLICATIONS A panel of TKI-resistant RET mutations were identified, and their drug sensitivities were cross-profiled. The results provide a reference for selecting appropriate TKIs to inhibit RET kinase domain mutants. Besides changes in the drug-interacting residues, mutations at distant sites could exert long-range effects resulting in TKI resistance. Among the four TKIs analysed here, nintedanib remained unaffected by mutations at the three distant sites.
Collapse
Affiliation(s)
- Xuan Liu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tao Shen
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Blaine H M Mooers
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Frank Hilberg
- Department of Pharmacology, Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Jie Wu
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
38
|
Schrank Z, Chhabra G, Lin L, Iderzorig T, Osude C, Khan N, Kuckovic A, Singh S, Miller RJ, Puri N. Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance. Cancers (Basel) 2018; 10:E224. [PMID: 29973561 PMCID: PMC6071023 DOI: 10.3390/cancers10070224] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is treated with many conventional therapies, such as surgery, radiation, and chemotherapy. However, these therapies have multiple undesirable side effects. To bypass the side effects elicited by these conventional treatments, molecularly-targeted therapies are currently in use or under development. Current molecularly-targeted therapies effectively target specific biomarkers, which are commonly overexpressed in lung cancers and can cause increased tumorigenicity. Unfortunately, several molecularly-targeted therapies are associated with initial dramatic responses followed by acquired resistance due to spontaneous mutations or activation of signaling pathways. Acquired resistance to molecularly targeted therapies presents a major clinical challenge in the treatment of lung cancer. Therefore, to address this clinical challenge and to improve lung cancer patient prognosis, we need to understand the mechanism of acquired resistance to current therapies and develop additional novel therapies. This review concentrates on various lung cancer biomarkers, including EGFR, ALK, and BRAF, as well as their potential mechanisms of drug resistance.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Gagan Chhabra
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Tsatsral Iderzorig
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
39
|
Latif M, Ashraf Z, Basit S, Ghaffar A, Zafar MS, Saeed A, Meo SA. Latest perspectives of orally bioavailable 2,4-diarylaminopyrimidine analogues (DAAPalogues) as anaplastic lymphoma kinase inhibitors: discovery and clinical developments. RSC Adv 2018; 8:16470-16493. [PMID: 35540549 PMCID: PMC9080316 DOI: 10.1039/c8ra01934g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
The course of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) therapy has improved impressively. The Food and Drug Administration (FDA) has approved crizotinib (Xalkori, Pfizer) as a first-in-class tyrosine kinase inhibitor (TKI) that demonstrated a substantial objective response rate (ORR) and remarkable progression-free survival (PFS). However, acquired resistance to crizotinib is still a major concern especially as the central nervous system (CNS) remains the most common sites of relapse. To combat disease resistance, limited PFS and poor CNS exposure exhibited by crizotinib (Xalkori, Pfizer) led to the discovery of numerous next generation ALK-TKIs and surprisingly most of them are 2,4-Diarylaminopyrimidine Analogues (DAAPalogues). To date, DAAPalogues have been investigated extensively to display their superior potency against numerous kinase targets especially ALK/ROS1. This review describes hit-to-drug evolution strategies, activity spectra, milestones related to medicinal chemistry discovery efforts and scalable synthetic pathways of clinically emerging DAAPalouges which are either progressing as investigational or preclinical candidates. In addition, the significance of DAAPalogues to treat the patients with ALK+-NSCLC in clinical settings has been detailed. This review is beneficial for medicinal chemists and researchers contributing to discovering ALK-TKIs to overcome existing issues related to DAAPalouges in the drug discovery process.
Collapse
Affiliation(s)
- Muhammad Latif
- College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Zaman Ashraf
- Department of Chemistry, Allama Iqbal Open University Islamabad 44000 Pakistan
| | - Sulman Basit
- College of Medicine, Centre for Genetics and Inherited Diseases (CGID), Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
| | - Abdul Ghaffar
- Department of Chemistry, University of Engineering and Technology Lahore Pakistan
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University Al-Madinah Al-Munawwarah Kingdom of Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University Islamabad 44000 Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-e-Azam University Islamabad Pakistan
| | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Costa RB, Costa RLB, Talamantes SM, Kaplan JB, Bhave MA, Rademaker A, Miller C, Carneiro BA, Mahalingam D, Chae YK. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer. Oncotarget 2018; 9:22137-22146. [PMID: 29774128 PMCID: PMC5955140 DOI: 10.18632/oncotarget.25154] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction Anaplastic lymphoma kinase (ALK) inhibitors are the mainstay treatment for patients with non-small cell lung carcinoma (NSCLC) harboring a rearrangement of the ALK gene or the ROS1 oncogenes. With the recent publication of pivotal trials leading to the approval of these compounds in different indications, their toxicity profile warrants an update. Materials and Methods A systematic literature search was performed in July 2017. Studies evaluating US FDA approved doses of one of the following ALK inhibitors: Crizotinib, Ceritinib, Alectinib or Brigatinib as monotherapy were included. Data were analyzed using random effects meta-analysis for absolute risks (AR), study heterogeneity, publication bias and differences among treatments. Results Fifteen trials with a total of 2,005 patients with evaluable toxicity data were included in this report. There was significant heterogeneity amongst different studies. The pooled AR of death and severe adverse events were 0.5% and 34.5%, respectively. Grade 3/4 nausea, vomiting, diarrhea, and constipation were uncommon: 2.6%, 2.5%, 2.7%, 1.2%, respectively. Conclusions ALK inhibitors have an acceptable safety profile with a low risk of treatment-related deaths. Important differences in toxicity profile were detected amongst the different drugs.
Collapse
Affiliation(s)
- Rubens Barros Costa
- Developmental Therapeutics Program, Northwestern University, Chicago, IL, USA
| | - Ricardo L B Costa
- Department of Breast Oncology, Lee Moffitt Cancer Center, Tampa, USA
| | | | - Jason B Kaplan
- Developmental Therapeutics Program, Northwestern University, Chicago, IL, USA
| | - Manali A Bhave
- Developmental Therapeutics Program, Northwestern University, Chicago, IL, USA
| | - Alfred Rademaker
- Northwestern University, Department of Preventive Medicine, Chicago, IL, USA
| | - Corinne Miller
- Galter Health Sciences Library, Northwestern University, Chicago, IL, USA
| | | | | | - Young Kwang Chae
- Developmental Therapeutics Program, Northwestern University, Chicago, IL, USA
| |
Collapse
|
41
|
Jain RK, Chen H. Spotlight on brigatinib and its potential in the treatment of patients with metastatic ALK-positive non-small cell lung cancer who are resistant or intolerant to crizotinib. LUNG CANCER (AUCKLAND, N.Z.) 2017; 8:169-177. [PMID: 29075144 PMCID: PMC5648304 DOI: 10.2147/lctt.s126507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the last decade, there have been major therapeutic advances in the management of patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer. Crizotinib was the first approved ALK inhibitor with significant benefits over chemotherapy. However, patients inevitably develop disease progression especially in central nervous system and acquire resistance to crizotinib. Several next-generation ALK inhibitors have been developed to overcome these resistance mechanisms and have demonstrated clinical benefits in crizotinib-refractory non-small cell lung cancer including in central nervous system. Brigatinib is a second-generation ALK inhibitor with high level of activity against ALK and several other targets. It is active in vitro against many ALK kinase domain mutations including L1196M, E1210K, and G1202R which may mediate acquired resistance to other ALK inhibitors. In Phase I/II and ALTA clinical studies, brigatinib has demonstrated substantial and durable responses and intracranial responses after progression on crizotinib. It has acceptable safety profile, but early pulmonary toxicity has been observed prompting to pursue daily dosing of 180 mg (with lead-in). Overall, 180 mg (with lead-in) has showed consistently better efficacy than 90 mg. In this review, we will discuss in detail these two pivotal trials that led to the accelerated approval for brigatinib and its future directions.
Collapse
Affiliation(s)
- Rohit K Jain
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hongbin Chen
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|