1
|
Golconda P, Andrade-Medina M, Oberstein A. Subconfluent ARPE-19 Cells Display Mesenchymal Cell-State Characteristics and Behave like Fibroblasts, Rather Than Epithelial Cells, in Experimental HCMV Infection Studies. Viruses 2023; 16:49. [PMID: 38257749 PMCID: PMC10821009 DOI: 10.3390/v16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Human cytomegalovirus (HCMV) has a broad cellular tropism and epithelial cells are important physiological targets during infection. The retinal pigment epithelial cell line ARPE-19 has been used to model HCMV infection in epithelial cells for decades and remains a commonly used cell type for studying viral entry, replication, and the cellular response to infection. We previously found that ARPE-19 cells, despite being derived from an epithelial cell explant, express extremely low levels of canonical epithelial proteins, such as E-cadherin and EpCAM. Here, we perform comparative studies of ARPE-19 and additional epithelial cell lines with strong epithelial characteristics. We find that ARPE-19 cells cultured under subconfluent conditions resemble mesenchymal fibroblasts, rather than epithelial cells; this is consistent with previous studies showing that ARPE-19 cultures require extended periods of high confluency culture to maintain epithelial characteristics. By reanalyzing public gene expression data and using machine learning, we find evidence that ARPE-19 cultures maintained across many labs exhibit mesenchymal characteristics and that the majority of studies employing ARPE-19 use them in a mesenchymal state. Lastly, by performing experimental HCMV infections across mesenchymal and epithelial cell lines, we find that ARPE-19 cells behave like mesenchymal fibroblasts, producing logarithmic yields of cell-free infectious progeny, while cell lines with strong epithelial character exhibit an atypical infectious cycle and naturally restrict the production of cell-free progeny. Our work highlights important characteristics of the ARPE-19 cell line and suggests that subconfluent ARPE-19 cells may not be optimal for modeling epithelial infection with HCMV or other human viruses. It also suggests that HCMV biosynthesis and/or spread may occur quite differently in epithelial cells compared to mesenchymal cells. These differences could contribute to viral persistence or pathogenesis in epithelial tissues.
Collapse
Affiliation(s)
| | | | - Adam Oberstein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 South Wolcott Ave., Chicago, IL 60612, USA; (P.G.); (M.A.-M.)
| |
Collapse
|
2
|
Zhang X, Luo F, Luo S, Li L, Ren X, Lin J, Liang Y, Ma C, Ding L, Zhang D, Ye T, Lin Y, Jin B, Gao S, Ye Q. Transcriptional Repression of Aerobic Glycolysis by OVOL2 in Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200705. [PMID: 35896951 PMCID: PMC9507357 DOI: 10.1002/advs.202200705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Aerobic glycolysis (Warburg effect), a hallmark of cancer, plays a critical role in cancer cell growth and metastasis; however, direct inhibition of the Warburg effect remains largely unknown. Herein, the transcription factor OVO-like zinc finger 2 (OVOL2) is demonstrated to directly repress the expression of several glycolytic genes, blocking the Warburg effect and breast tumor growth and metastasis in vitro and in vivo. OVOL2 inhibits glycolysis by recruiting the nuclear receptor co-repressor (NCoR) and histone deacetylase 3 (HDAC3). The tumor suppressor p53, a key regulator of cancer metabolism, activates OVOL2 by binding to the oncoprotein mouse double minute 2 homolog (MDM2) and inhibiting MDM2-mediated ubiquitination and degradation of OVOL2. OVOL2 expression is negatively correlated with glycolytic gene expression and can be a good predictor of prognosis in patients with breast cancer. Therefore, targeting the p53/MDM2/OVOL2 axis provides a potential avenue for cancer treatment, especially breast cancer.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Fei Luo
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Medical School of Guizhou UniversityGuiyang550025China
| | - Shaliu Luo
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Medical School of Guizhou UniversityGuiyang550025China
| | - Ling Li
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Xinxin Ren
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
- Shanxi Medical UniversityTaiyuan030000China
| | - Jing Lin
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Department of Clinical LaboratoryThe Fourth Medical Center of PLA General HospitalBeijing100037China
| | - Yingchun Liang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Chao Ma
- Institute of Cancer Stem CellDalian Medical UniversityDalian116000China
| | - Lihua Ding
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Deyu Zhang
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Tianxing Ye
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| | - Yanni Lin
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
- Shanxi Medical UniversityTaiyuan030000China
| | - Bilian Jin
- Institute of Cancer Stem CellDalian Medical UniversityDalian116000China
| | - Shan Gao
- Zhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthSoutheast UniversityNanjing210096China
| | - Qinong Ye
- Department of Medical Molecular BiologyBeijing Institute of BiotechnologyCollaborative Innovation Center for Cancer MedicineBeijing100850China
| |
Collapse
|
3
|
Chen J, Tang H, Li T, Jiang K, Zhong H, Wu Y, He J, Li D, Li M, Cai X. Comprehensive Analysis of the Expression, Prognosis, and Biological Significance of OVOLs in Breast Cancer. Int J Gen Med 2021; 14:3951-3960. [PMID: 34345183 PMCID: PMC8323863 DOI: 10.2147/ijgm.s326402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022] Open
Abstract
Background The study aimed to investigate the expression of OVOLs in breast cancer (BRCA) tissues and their value in prognosis. Methods ONCOMINE was used to analyze the expressions of OVOL1, OVOL2, and OVOL3 mRNA between BRCA tissues and normal breast tissues. The Wilcoxon rank sum test and t-test were used to assess the expression of OVOLs between BRCA tissues and unpaired/paired normal breast tissues. GEPIA and ROC curves were used to analyze the relationship between OVOLs expression and clinical pathological stage. Kaplan–Meier plotter was used to analyze prognosis. cBioPortal was used to analyze the mutation of OVOLs. GEPIA was used to analyze the co-expression of OVOLs. GO and KEGG analyses were performed by the DAVID software to predict the function of OVOLs co-expression genes. Results The expression of OVOL1/2 was significantly higher in BRCA tissues than in normal breast tissues. The OVOL3 expression correlated with tumor stage. The AUC of OVOLs was 0.757, 0.754, and 0.537, respectively. OVOL1 high expression was associated with shorter overall survival (HR: 1.48; 95% CI: 1.07–2.04; P=0.018). The OVOLs were associated with pathways including axon guidance, thyroid hormone signaling pathway, and ubiquinone and other terpenoid-quinone biosynthesis. Conclusion OVOL1 is a new potential marker of prognosis in BRCA, and OVOL1/2 are potential therapeutic targets in BRCA.
Collapse
Affiliation(s)
- Jingsheng Chen
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China.,Medical Department, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Hongjun Tang
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Taidong Li
- Department of Thoracic Surgery, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Kangwei Jiang
- Medical Department, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Haiming Zhong
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Yuye Wu
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Jiangtao He
- Department of Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, 524002, Guangdong, People's Republic of China
| | - Dongbing Li
- MyGene Diagnostics Co., Ltd, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Mengzhen Li
- MyGene Diagnostics Co., Ltd, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xingsheng Cai
- MyGene Diagnostics Co., Ltd, Guangzhou, 510000, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Al Hayek S, Alsawadi A, Kambris Z, Boquete J, Bohère J, Immarigeon C, Ronsin B, Plaza S, Lemaitre B, Payre F, Osman D. Steroid-dependent switch of OvoL/Shavenbaby controls self-renewal versus differentiation of intestinal stem cells. EMBO J 2021; 40:e104347. [PMID: 33372708 PMCID: PMC7883054 DOI: 10.15252/embj.2019104347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Adult stem cells must continuously fine-tune their behavior to regenerate damaged organs and avoid tumors. While several signaling pathways are well known to regulate somatic stem cells, the underlying mechanisms remain largely unexplored. Here, we demonstrate a cell-intrinsic role for the OvoL family transcription factor, Shavenbaby (Svb), in balancing self-renewal and differentiation of Drosophila intestinal stem cells. We find that svb is a downstream target of Wnt and EGFR pathways, mediating their activity for stem cell survival and proliferation. This requires post-translational processing of Svb into a transcriptional activator, whose upregulation induces tumor-like stem cell hyperproliferation. In contrast, the unprocessed form of Svb acts as a repressor that imposes differentiation into enterocytes, and suppresses tumors induced by altered signaling. We show that the switch between Svb repressor and activator is triggered in response to systemic steroid hormone, which is produced by ovaries. Therefore, the Svb axis allows intrinsic integration of local signaling cues and inter-organ communication to adjust stem cell proliferation versus differentiation, suggesting a broad role of OvoL/Svb in adult and cancer stem cells.
Collapse
Affiliation(s)
- Sandy Al Hayek
- Faculty of Sciences IIILebanese UniversityTripoliLebanon
- Azm Center for Research in Biotechnology and its ApplicationsLBA3B, EDST, Lebanese UniversityTripoliLebanon
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Ahmad Alsawadi
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Zakaria Kambris
- Biology DepartmentFaculty of Arts and SciencesAmerican University of BeirutBeirutLebanon
| | | | - Jérôme Bohère
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Clément Immarigeon
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Brice Ronsin
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Serge Plaza
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
- Present address:
Laboratoire de Recherche en Sciences Végétales (LSRV)CNRSUPSCastanet‐TolosanFrance
| | - Bruno Lemaitre
- Global Health Institute, School of Life SciencesLausanneSwitzerland
| | - François Payre
- Centre de Biologie du Développement (CBD)Centre de Biologie Intégrative (CBI)Université de ToulouseCNRSToulouseFrance
| | - Dani Osman
- Faculty of Sciences IIILebanese UniversityTripoliLebanon
- Azm Center for Research in Biotechnology and its ApplicationsLBA3B, EDST, Lebanese UniversityTripoliLebanon
| |
Collapse
|
5
|
Saxena K, Srikrishnan S, Celia-Terrassa T, Jolly MK. OVOL1/2: Drivers of Epithelial Differentiation in Development, Disease, and Reprogramming. Cells Tissues Organs 2020; 211:183-192. [PMID: 32932250 DOI: 10.1159/000511383] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
OVOL proteins (OVOL1 and OVOL2), vertebrate homologs of Drosophila OVO, are critical regulators of epithelial lineage determination and differentiation during embryonic development in tissues such as kidney, skin, mammary epithelia, and testis. OVOL can inhibit epithelial-mesenchymal transition and/or can promote mesenchymal-epithelial transition. Moreover, they can regulate the stemness of cancer cells, thus playing an important role during cancer cell metastasis. Due to their central role in differentiation and maintenance of epithelial lineage, OVOL overexpression has been shown to be capable of reprogramming fibroblasts to epithelial cells. Here, we review the roles of OVOL-mediated epithelial differentiation across multiple contexts, including embryonic development, cancer progression, and cellular reprogramming.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Toni Celia-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
6
|
OVOL2-Mediated ZEB1 Downregulation May Prevent Promotion of Actinic Keratosis to Cutaneous Squamous Cell Carcinoma. J Clin Med 2020; 9:jcm9030618. [PMID: 32106476 PMCID: PMC7141138 DOI: 10.3390/jcm9030618] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/23/2023] Open
Abstract
Progression of actinic keratosis (AK) to cutaneous squamous cell carcinoma (cSCC) is rare. Most cases of AK remain as intraepidermal lesions, owing to the suppression of the epithelial-to-mesenchymal transition (EMT). Ovo-like transcriptional repressor 1 (OVOL1) and ovo-like zinc finger 2 (OVOL2) are important modulators of EMT in some tumors, but their roles in skin tumors remain elusive. This study elucidated the roles of OVOL1/2 in AK and cSCC using 30 AK/30 cSCC clinical samples, and an A431 human SCC cell line using immunohistochemistry and molecular biological approaches. Immunohistochemically, OVOL1/2 were upregulated in AK and downregulated in cSCC. Meanwhile, EMT-related factors, vimentin and zinc finger E-box binding homeobox 1 (ZEB1) were downregulated in AK and upregulated in cSCC. Moreover, ZEB1 expression was higher in tumors in which OVOL2 expression was low. Thus, we observed an inverse association between OVOL2 and ZEB1 expression in AK and cSCC. Although knockdown of OVOL1 or OVOL2 increased the mRNA and protein levels of ZEB1, only OVOL2 knockdown increased the invasive ability of A431. In conclusion, OVOL2 inhibits ZEB1 expression and may inhibit the promotion of AK into cSCC. OVOL2/ZEB1 axis may be a potential target for preventing the development of cSCC.
Collapse
|
7
|
Manzotti G, Torricelli F, Benedetta D, Lococo F, Sancisi V, Rossi G, Piana S, Ciarrocchi A. An Epithelial-to-Mesenchymal Transcriptional Switch Triggers Evolution of Pulmonary Sarcomatoid Carcinoma (PSC) and Identifies Dasatinib as New Therapeutic Option. Clin Cancer Res 2018; 25:2348-2360. [PMID: 30587547 DOI: 10.1158/1078-0432.ccr-18-2364] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/28/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive form of NSCLC. Rarity and poor characterization have limited the development of PSC-tailored treatment protocols, leaving patients with inadequate therapeutic options. In this study, we investigated the gene expression profile of PSCs, with the aim to characterize the molecular mechanisms responsible for their evolution and to identify new drugs for their treatment. EXPERIMENTAL DESIGN A training set of 17 biphasic PSCs was selected and tested for the expression of a large panel of 770 genes related to cancer progression using NanoString technology. Computational analyses were used to characterize a PSCs-gene specific signature from which pathways and drivers of PSC evolution were identified and validated using functional assays in vitro. This signature was validated in a separate set of 15 PSCs and 8 differentiated NSCLC and used to interrogate the cMAP database searching for FDA-approved small molecules able to counteract PSC phenotype. RESULTS We demonstrated that the transcriptional activation of an epithelial mesenchymal transition (EMT) program drives PSC phylogeny in vivo. We showed that loss of the epithelial-associated transcription factor (TF) OVOL2 characterizes the transition to sarcomatoid phenotype triggering the expression of EMT promoting TFs, including TWIST and ZEB and the expression of the membrane kinase DDR2. Finally, using a drug repurposing approach, we identified dasatinib as potential inhibitor of the PSC-gene expression signature and we confirmed in vitro that this drug efficiently restrains proliferation and reverts the sarcomatoid-associated phenotype. CONCLUSIONS Our data provide new insights into PSC evolution and provide the rationale for further clinical studies with dasatinib.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Donati Benedetta
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Filippo Lococo
- Thoracic Surgery Unit, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Giulio Rossi
- Operative Unit of Pathologic Anatomy, Azienda Unità Sanitaria Locale della Romagna, Hospital St. Maria delle Croci, Ravenna, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale- IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
8
|
Tsuji G, Ito T, Chiba T, Mitoma C, Nakahara T, Uchi H, Furue M. The role of the OVOL1–OVOL2 axis in normal and diseased human skin. J Dermatol Sci 2018; 90:227-231. [DOI: 10.1016/j.jdermsci.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/21/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
9
|
Liu J, Wu Q, Wang Y, Wei Y, Wu H, Duan L, Zhang Q, Wu Y. Ovol2 induces mesenchymal-epithelial transition via targeting ZEB1 in osteosarcoma. Onco Targets Ther 2018; 11:2963-2973. [PMID: 29872308 PMCID: PMC5973319 DOI: 10.2147/ott.s157119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Osteosarcoma (OS) is the most common type of primary solid bone tumor. Ovo-like zinc finger 2 (Ovol2), a zinc finger transcription factor, is a mesenchymal–epithelial transition (MET) driver that induces miR-200 expression in prostate cancer, breast cancer, and hepatocellular carcinoma. However, little is known about the expression and function of MET in sarcomas, including OS. This study investigated the expression and clinicopathological significance of Ovol2 and its effect on MET in OS. Patients and methods The Ovol2 expression in the tumor samples from patients with OS was examined using immunohistochemistry (IHC). We then upregulated the Ovol2 expression in MG-63 and SW1353 cells, detected the expression of MET-associated proteins, and observed the effects of Ovol2 on OS cell proliferation, migration, and cytoskeleton reorganization using Cell Counting Kit-8, transwell invasion, and phalloidin dyeing assays, respectively. The correlation between zinc finger E-box-binding homeobox 1 (ZEB1) and Ovol2 was assessed using the luciferase gene reporter assay in the MG-63 and SW1353 cells and IHC in the human OS tissue samples. Results The Ovol2 protein overexpression was related to the clinical grade (P=0.02) and the recurrence and metastasis (P=0.02) of OS. Results of the in vitro experiments showed that Ovol2 overexpression can suppress cell migration and invasion and can regulate the expression levels of MET-associated proteins. Ovol2 suppresses ZEB1 expression by binding to the ZEB1 promoter. Ovol2 is concomitant with a reduced IHC expression of ZEB1 in human OS tissues. Conclusion Ovol2 expression is associated with MET in OS cells and suppresses ZEB1 expression and OS progression.
Collapse
Affiliation(s)
| | - Qi Wu
- Department of Orthopedics
| | | | | | - Hong Wu
- Department of Ultrasound, Bayannaoer City Hospital, Bayannaoer, Inner Mongolia, People's Republic of China
| | | | | | | |
Collapse
|
10
|
Qi XK, Han HQ, Zhang HJ, Xu M, Li L, Chen L, Xiang T, Feng QS, Kang T, Qian CN, Cai MY, Tao Q, Zeng YX, Feng L. OVOL2 links stemness and metastasis via fine-tuning epithelial-mesenchymal transition in nasopharyngeal carcinoma. Am J Cancer Res 2018; 8:2202-2216. [PMID: 29721073 PMCID: PMC5928881 DOI: 10.7150/thno.24003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/13/2018] [Indexed: 01/06/2023] Open
Abstract
Rationale: Metastasis is the leading cause of disease-related death among patients with nasopharyngeal carcinoma (NPC). Mounting evidence suggest that epithelial-mesenchymal transition (EMT) is crucial for cancer cells to acquire metastatic ability. In this study, we aim to clarify the extent to which EMT is involved in various cancer properties and identify novel markers for predicting the prognosis of NPC patients. Methods: Two cellular models derived from the same NPC cell line with distinct metastasis ability were used for microarray analysis to identify key transcriptional factors that drive metastasis. Cell migration and invasion were analyzed by wound healing and Transwell analysis. Lung metatasis was determined by tail vein injection assay. Cancer stemness was analyzed using colony formation and xenograft assay. The EMT extent was evaluated using immunoblotting, RT-qPCR and immunofluorescence of EMT markers. The value of OVOL2 in prognosis was determined by immunohistochemistry in NPC biopsies. Results: OVOL2 was the most significantly down-regulated EMT transcription factor (EMT-TF) in cellular models of NPC metatasis. Low levels of OVOL2 were associated with poor overall survival of NPC patients and the reduced expression is partly due to promoter methylation and epithelial dedifferentiation. Knockout of OVOL2 in epithelial-like NPC cells partially activates EMT program and significantly promotes cancer stemness and metastatic phenotypes. Conversely, ectopically expression of OVOL2 in mesenchymal-like cells leads to a partial transition to an epithelial phenotype and reduced malignancy. Reversing EMT by depleting ZEB1, a major target of OVOL2, does not eliminate the stemness advantage of OVOL2-deficient cells but does reduce their invasion capacity. A comparison of subpopulations at different stages of EMT revealed that the extent of EMT is positively correlated with metastasis and drug resistance; however, only the intermediate EMT state is associated with cancer stemness. Conclusion: Distinct from other canonical EMT-TFs, OVOL2 only exhibits modest effect on EMT but has a strong impact on both metastasis and tumorigenesis. Therefore, OVOL2 could serve as a prognostic indicator for cancer patients.
Collapse
|
11
|
cPLA2α mediates TGF-β-induced epithelial-mesenchymal transition in breast cancer through PI3k/Akt signaling. Cell Death Dis 2017; 8:e2728. [PMID: 28383549 PMCID: PMC5477578 DOI: 10.1038/cddis.2017.152] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 12/29/2022]
Abstract
A high incidence of tumor recurrence and metastasis has been reported in breast cancer patients; nevertheless, the underlying molecular mechanisms are largely unknown. Epithelial–mesenchymal transition (EMT), which is induced by transforming growth factor-β (TGF-β), has been implicated in tumorigenesis and breast cancer metastasis. EMT events are now directly associated with tumor metastasis, and this progress is dependent on the inflammatory microenvironment. Cytosolic phospholipase A2α (cPLA2α) has been shown to participate in a series of biological processes including inflammation and cancer development. However, the role and molecular mechanism of cPLA2α in breast cancer EMT and metastasis remain enigmatic. In this study, we found that cPLA2α was commonly overexpressed in most human breast cancer tissues and significantly correlated with a poor prognosis for human breast cancer. Functional studies demonstrated that cPLA2α overexpression was significantly associated with elevated migration and invasion in MDA-MB-231 and T47D cells. Conversely, reduced cPLA2α expression strongly attenuated metastasis and the EMT program of MDA-MB-231 cells. Further study found that knockdown of cPLA2α in MDA-MB-231 cells inhibited TGF-β-induced EMT through the PI3K/Akt signaling pathway. Animal experiments revealed that cPLA2α downregulation in MDA-MB-231 cells markedly restrained tumorigenesis and metastasis in vivo. This study indicates the potential role of cPLA2α in breast cancer metastasis and indicates that this molecule is a promising therapeutic target for breast cancer.
Collapse
|