1
|
DUBR suppresses migration and invasion of human lung adenocarcinoma cells via ZBTB11-mediated inhibition of oxidative phosphorylation. Acta Pharmacol Sin 2022; 43:157-166. [PMID: 33758355 PMCID: PMC8724295 DOI: 10.1038/s41401-021-00624-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 02/07/2021] [Indexed: 01/03/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in a variety of cancers, but the role of LncRNA DUBR in lung adenocarcinoma (LUAD), the most prevalent form of lung cancer, remains unclear. In this study we investigated the expression of DUBR in LUAD to ascertain its association with the clinical pathology and prognosis of LUAD. Analysis of mRNA expression in The Cancer Genome Atlas (TCGA) LUAD database and in-house LUAD cohort (n = 94) showed that DUBR was significantly downregulated in LUAD, and was associated with poor prognosis. In LUAD cell lines (H1975, A549), overexpression of DUBR significantly suppressed the migration and invasion of the LUAD cells. We demonstrated that c-Myc could bind to the promoter of DUBR, and transcriptionally suppressed its expression. Knockdown of c-Myc almost completely blocked the invasion and migration of LUAD cells, whereas knockdown of DUBR partially rescued c-Myc-knockdown suppressed cell migration and invasion. Furthermore, DUBR overexpression significantly increased the expression of a downstream protein of DUBR, zinc finger, and BTB domain containing 11 (ZBTB11), in H1975 and A549 cells; knockdown of ZBTB11 partially rescued the DUBR-overexpression suppressed cell migration and invasion; knockdown of c-Myc significantly upregulated the expression of ZBTB11 in LUAD cells. Finally, we revealed that DUBR/ZBTB11 axis suppressed oxidative phosphorylation in LUAD cells. In short, we demonstrate that c-Myc/DUBR/ZBTB11 axis suppresses migration and invasion of LUAD by attenuating cell oxidative phosphorylation, which provides new insights into the regulatory mechanism of DUBR.
Collapse
|
2
|
Wang Z, Budhu AS, Shen Y, Wong LL, Hernandez BY, Tiirikainen M, Ma X, Irwin ML, Lu L, Zhao H, Lim JK, Taddei T, Mishra L, Pawlish K, Stroup A, Brown R, Nguyen MH, Koshiol J, Hernandez MO, Forgues M, Yang HI, Lee MH, Huang YH, Iwasaki M, Goto A, Suzuki S, Matsuda K, Tanikawa C, Kamatani Y, Mann D, Guarnera M, Shetty K, Thomas CE, Yuan JM, Khor CC, Koh WP, Risch H, Wang XW, Yu H. Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study. JGH Open 2021; 5:1363-1372. [PMID: 34950780 PMCID: PMC8674550 DOI: 10.1002/jgh3.12682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Chronic hepatitis C virus (HCV) infection, long-term alcohol use, cigarette smoking, and obesity are the major risk factors for hepatocellular carcinoma (HCC) in the United States, but the disease risk varies substantially among individuals with these factors, suggesting host susceptibility to and gene-environment interactions in HCC. To address genetic susceptibility to HCC, we conducted a genome-wide association study (GWAS). METHODS Two case-control studies on HCC were conducted in the United States. DNA samples were genotyped using the Illumian microarray chip with over 710 000 single nucleotide polymorphisms (SNPs). We compared these SNPs between 705 HCC cases and 1455 population controls for their associations with HCC and verified our findings in additional studies. RESULTS In this GWAS, we found that two SNPs were associated with HCC at P < 5E-8 and six SNPs at P < 5E-6 after adjusting for age, sex, and the top three principal components (PCs). Five of the SNPs in chromosome 22q13.31, three in PNPLA3 (rs2281135, rs2896019, and rs4823173) and two in SAMM50 (rs3761472, rs3827385), were replicated in a small US case-control study and a cohort study in Singapore. The associations remained significant after adjusting for body mass index and HCV infection. Meta-analysis of multiple datasets indicated that these SNPs were significantly associated with HCC. CONCLUSIONS SNPs in PNPLA3 and SAMM50 are known risk loci for nonalcoholic fatty liver disease (NAFLD) and are suspected to be associated with HCC. Our GWAS demonstrated the associations of these SNPs with HCC in a US population. Biological mechanisms underlying the relationship remain to be elucidated.
Collapse
Affiliation(s)
- Zhanwei Wang
- University of Hawaii Cancer Center Honolulu Hawaii USA
| | - Anuradha S Budhu
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer Research National Cancer Institute Bethesda Maryland USA
| | - Yi Shen
- University of Hawaii Cancer Center Honolulu Hawaii USA
| | | | | | | | - Xiaomei Ma
- Yale School of Public Health New Haven Connecticut USA
| | | | - Lingeng Lu
- Yale School of Public Health New Haven Connecticut USA
| | - Hongyu Zhao
- Yale School of Public Health New Haven Connecticut USA
| | - Joseph K Lim
- Yale School of Medicine New Haven Connecticut USA
| | - Tamar Taddei
- Yale School of Medicine New Haven Connecticut USA
| | - Lopa Mishra
- Center for Translational Medicine, Department of Surgery The George Washington University Washington District of Columbia USA
| | - Karen Pawlish
- New Jersey State Cancer Registry, New Jersey Department of Health Trenton New Jersey USA
| | - Antoinette Stroup
- Rutgers Cancer Institute, and Rutgers School of Public Health New Brunswick New Jersey USA
| | - Robert Brown
- Weill Cornell Medical College, and College of Physicians and Surgeons, Columbia University New York New York USA
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology Stanford University Medical Center Palo Alto California USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA
| | - Maria O Hernandez
- Laboratory of Human Carcinogenesis Center for Cancer Research, National Cancer Institute Bethesda Maryland USA
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis Center for Cancer Research, National Cancer Institute Bethesda Maryland USA
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica Taipei Taiwan.,Institute of Clinical Medicine, National Yang Ming University Taipei Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming University Taipei Taiwan
| | - Yu-Han Huang
- Institute of Clinical Medicine, National Yang Ming University Taipei Taiwan
| | - Motoki Iwasaki
- Division of Epidemiology Center for Public Health Sciences, National Cancer Center Tokyo Japan
| | - Atsushi Goto
- Division of Epidemiology Center for Public Health Sciences, National Cancer Center Tokyo Japan
| | - Shiori Suzuki
- Division of Epidemiology Center for Public Health Sciences, National Cancer Center Tokyo Japan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of Tokyo Tokyo Japan
| | - Chizu Tanikawa
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of Tokyo Tokyo Japan
| | - Yoichiro Kamatani
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of Tokyo Tokyo Japan
| | - Dean Mann
- Department of Pathology University of Maryland School of Medicine Baltimore Maryland USA
| | - Maria Guarnera
- Department of Pathology University of Maryland School of Medicine Baltimore Maryland USA
| | - Kirti Shetty
- Department of Gastroenterology and Hepatology University of Maryland School of Medicine Baltimore Maryland USA
| | - Claire E Thomas
- Division of Cancer Control and Population Sciences University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center Pittsburgh Pennsylvania USA.,Department of Epidemiology Graduate School of Public Health, University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center Pittsburgh Pennsylvania USA.,Department of Epidemiology Graduate School of Public Health, University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research Singapore Singapore.,Singapore Eye Research Institute Singapore Singapore
| | - Woon-Puay Koh
- Health Systems and Services Research, Duke-NUS Medical School Singapore Singapore Singapore.,Saw Swee Hock School of Public Health, National University of Singapore Singapore Singapore
| | - Harvey Risch
- Yale School of Public Health New Haven Connecticut USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer Research National Cancer Institute Bethesda Maryland USA
| | - Herbert Yu
- University of Hawaii Cancer Center Honolulu Hawaii USA
| |
Collapse
|
3
|
Role of Curcumin in Regulating Long Noncoding RNA Expression in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:13-23. [PMID: 33861433 DOI: 10.1007/978-3-030-64872-5_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phytochemicals are various compounds produced by plants. There is growing evidence on their potential health effects. Some of these compounds are considered as traditional medicines and used as painkillers, anti-inflammatory agents, and for other applications. One of these phytochemicals is curumin, a natural polyphenol derived from the turmeric plant (Curcuma longa L.). Curcumin is widely used as a food coloring, preservative and condiment. It has also been shown to have antioxidative and anti-inflammatory effects. Moreover, there is growing evidence that curcumin alters long noncoding RNAs (lncRNAs) in many kinds of cancer. These noncoding RNAs can cause epigenetic modulation in the expression of several genes. This study reviews reports of curcumin effects on lncRNAs in lung, prostate, colorectal, breast, pancreatic, renal, gastric, and ovarian cancers.
Collapse
|
4
|
Narayanan D, Mandal R, Hardin H, Chanana V, Schwalbe M, Rosenbaum J, Buehler D, Lloyd RV. Long Non-coding RNAs in Pulmonary Neuroendocrine Neoplasms. Endocr Pathol 2020; 31:254-263. [PMID: 32388776 DOI: 10.1007/s12022-020-09626-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pulmonary neuroendocrine neoplasms (NENs) are classified into low-grade neuroendocrine tumors and high-grade neuroendocrine carcinomas (NECs). There are significant differences in therapeutic strategies of the different NEN subtypes, and therefore, precise classification of pulmonary NENs is critical. However, challenges in pulmonary NEN classification include overlap of diagnostic histological features among the subtypes and reduced or negative expression of neuroendocrine markers in poorly differentiated pulmonary NECs. Recently, transcription factor insulinoma-associated protein 1 (INSM1) was identified as a sensitive marker of neuroendocrine and neuroepithelial differentiation. In this study, INSM1 expression was detected by immunohistochemistry in greater than 94% of pulmonary NENs, indicating that it is a highly sensitive marker of pulmonary NENs and is useful to detect poorly differentiated pulmonary NECs. Although there are well-established morphological and immunohistologic criteria to diagnose pulmonary NENs, there is no universal consensus regarding prognostic markers of pulmonary NENs. Studies have shown that non-small cell lung cancers express long non-coding RNAs (lncRNAs), which regulate gene expression, epithelial-to-mesenchymal transition, and carcinogenesis. We characterized expression and function of lncRNAs, including HOX transcript antisense RNA (HOTAIR), maternally expressed 3 (MEG3), and prostate cancer antigen 3 (PCA3) in pulmonary NENs, including typical carcinoid tumors, atypical carcinoid tumors, small cell lung carcinoma (SCLC/NEC), and large cell neuroendocrine carcinoma (LCNEC/NEC). In situ hybridization and real-time polymerase chain reaction studies showed higher expression (p < 0.01) of all lncRNAs in SCLC/NEC. Small interfering RNA studies indicated a role for MEG3 and PCA3 in tumor proliferation. Therefore, these lncRNAs may serve as prognostic indicators of pulmonary NEN aggressiveness and as possible therapeutic targets.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Neuroendocrine/diagnosis
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/mortality
- Carcinoma, Neuroendocrine/pathology
- Cohort Studies
- Female
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Lung Neoplasms/diagnosis
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Grading
- Neuroendocrine Tumors/diagnosis
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/mortality
- Neuroendocrine Tumors/pathology
- Prognosis
- RNA, Long Noncoding/physiology
- Tissue Array Analysis
- Tumor Cells, Cultured
- Young Adult
Collapse
Affiliation(s)
- Damodaran Narayanan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Rakesh Mandal
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Vishal Chanana
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Michael Schwalbe
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Jason Rosenbaum
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792-8550, USA.
| |
Collapse
|
5
|
Peng W, He D, Shan B, Wang J, Shi W, Zhao W, Peng Z, Luo Q, Duan M, Li B, Cheng Y, Dong Y, Tang F, Zhang C, Duan C. LINC81507 act as a competing endogenous RNA of miR-199b-5p to facilitate NSCLC proliferation and metastasis via regulating the CAV1/STAT3 pathway. Cell Death Dis 2019; 10:533. [PMID: 31296840 PMCID: PMC6624296 DOI: 10.1038/s41419-019-1740-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/04/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Recently, accumulating data indicate that long noncoding RNAs (LncRNAs) function as novel crucial regulators of diverse biological processes, including proliferation and metastasis, in tumorigenesis. Lnc NONHSAT081507.1 (LINC81507) is associated with lung adenocarcinoma. However, its pathological role in non-small cell lung cancer (NSCLC) remains unknown. In our study we investigated the role of LINC81507 in NSCLC. The expression of LINC81507 was analyzed in 105 paired NSCLC tumor specimens and paired adjacent non-tumorous tissues from NSCLC patients by real-time quantitative PCR (RT-qPCR). Gain- and loss-of-function experiments were conducted to investigate the functions of LINC81507, miR-199b-5p and CAV1. Reduced expression of LINC81507 resulted in cell growth, proliferation, migration and epithelial–mesenchymal transition (EMT) in NSCLC cells, whereas ectopic overexpression of LINC81507 resulted in the opposite effects both in vitro and in vivo. Nuclear and Cytoplasmic fractionation assays showed LINC81507 mainly resided in cytoplasm. Bioinformatics analysis and dual-luciferase assays revealed that miR-199b-5p was a direct target of LINC81507 through binding Ago2. Mechanistic analysis demonstrated that miR-199b-5p specifically targeted the Caveolin1 (CAV1) gene, and LINC81507 inactivated the STAT3 pathway in a CAV1-dependent manner. Taken together, LINC81507 is decreased in NSCLC and functions as a sponge to miR-199b-5p to regulate CAV1/STAT3 pathway, which suggests that LINC81507 serve as a tumor suppressor and potential therapeutic target and biomarker for metastasis and prognosis in NSCLC.
Collapse
Affiliation(s)
- Wei Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Dan He
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha, 410008, PR China
| | - Bin Shan
- College of Medicine, Washington State University Spokane, Spokane, WA, 99201, USA
| | - Jun Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Wenwen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Wenyuan Zhao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Zhenzi Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Qingxi Luo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Minghao Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Yeping Dong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Faqing Tang
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha, 410008, PR China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Chaojun Duan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| |
Collapse
|
6
|
RREB1-induced upregulation of the lncRNA AGAP2-AS1 regulates the proliferation and migration of pancreatic cancer partly through suppressing ANKRD1 and ANGPTL4. Cell Death Dis 2019; 10:207. [PMID: 30814490 PMCID: PMC6393474 DOI: 10.1038/s41419-019-1384-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/02/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be involved in a variety of human diseases, including cancers. However, their mechanisms have not yet been fully elucidated. We investigated lncRNA changes that may be associated with pancreatic cancer (PC) by analyzing published microarray data, and identified AGAP2-AS1 as a relatively overexpressed lncRNA in PC tissues. qRT-PCR assays were performed to examine expression levels of AGAP2-AS1. MTT assays, colony formation assays, and EdU assays were used to determine the proliferative capacity of cells. Flow cytometry and TUNEL assays were used to study the regulation of AGAP2-AS1 in the cell cycle and apoptosis. Transwell experiments were used to study changes in cell invasion and metastasis, and a nude mouse model was established to assess the effects of AGAP2-AS1 on tumorigenesis in vivo. RNA sequencing was performed to probe AGAP2-AS1-related pathways. Subcellular fractionation and FISH assays were used to determine the distribution of AGAP2-AS1 in PC cells, and RIP and ChIP were used to determine the molecular mechanism of AGAP2-AS1-mediated regulation of potential target genes. Increased expression of AGAP2-AS1 was associated with tumor size and pathological stage progression in patients with PC. RREB1 was found to activate transcription of AGAP2-AS1 in PC cells. AGAP2-AS1 affected proliferation, apoptosis, cycle arrest, invasion, and metastasis of PC cells in vitro, and AGAP2-AS1 regulated PC proliferation in vivo. Furthermore, AGAP2-AS1 epigenetically inhibited the expression of ANKRD1 and ANGPTL4 by recruiting zeste homolog 2 (EZH2), thereby promoting PC proliferation and metastasis. In summary, our data show that RREB1-induced upregulation of AGAP2-AS1 regulates cell proliferation and migration in PC partly through suppressing ANKRD1 and ANGPTL4 by recruiting EZH2. AGAP2-AS1 represents a potential target for the diagnosis and treatment of PC in the future.
Collapse
|
7
|
Zhang Y, Huang J, Chen J, Yang K, Chen J, Xu L, Zhou Z, Chen M. The mutation of hepatitis B virus and the prognosis of hepatocellular carcinoma after surgery: a pilot study. Cancer Manag Res 2018; 10:599-611. [PMID: 29628773 PMCID: PMC5877868 DOI: 10.2147/cmar.s160047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Although hepatitis B virus (HBV) is still one of the most common etiological factors for hepatocellular carcinoma (HCC), the association between the HBV mutations and the clinical characteristics and prognosis of HBV-related HCC patients (HBV-HCC) after surgical resection remains largely unknown. Materials and methods A cohort of 131 consecutive patients who received hepatectomy for HBV-HCC were retrospectively enrolled. The HBV genotype and 14 genomic mutations, which have been reported to relate to HCC in liver samples, were sequenced. The associations between the genomic mutations and clinical characteristics and outcomes were analyzed. Results Both A1762T/G1764A mutation and Pre S deletion related to worse overall survival (OS, p=0.040 and p<0.001, respectively) and disease-free survival (DFS, p=0.040 and p<0.001, respectively), G1899A mutation related to worse OS (p=0.030), A1762T/G1764A mutation correlated with tumor size (r=0.204, p=0.019), G1899A mutation correlated with vascular invasion (r=0.332, p<0.001), and Pre S deletion correlated with alpha-fetoprotein (AFP; r=0.254, p=0.003) positively. Multivariate analysis with Cox proportional hazards model revealed that both A1762T/G1764A mutation and Pre S deletion were independent prognostic factors for OS (hazard ratio [HR]=3.701, 95% CI=1.390–9.855, p=0.009, and HR=4.816, 95% CI=2.311–10.032, p<0.001, respectively) and DFS (HR=3.245, 95% CI=1.400–7.521, p=0.006, and HR=2.437, 95% CI=1.311–4.530, p<0.001, respectively), and patients with dual mutations were found to have the worst OS and DFS (p<0.001 and p<0.001, respectively). Patients with A1762T/G1764A mutation or Pre S deletion were more likely to have early recurrence (p=0.042 and p=0.019, respectively). Conclusion HBV DNA genomic mutations in A1762T/G1764A and Pre S deletion were associated with worse prognoses and early recurrence for HBV-HCC patients after surgery.
Collapse
Affiliation(s)
- Yaojun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Junting Huang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jinbin Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Keli Yang
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jiancong Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li Xu
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhongguo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Minshan Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Zhang S, Ge W, Zou G, Yu L, Zhu Y, Li Q, Zhang Y, Wang Z, Xu T. MiR-382 targets GOLM1 to inhibit metastasis of hepatocellular carcinoma and its down-regulation predicts a poor survival. Am J Cancer Res 2018; 8:120-131. [PMID: 29416925 PMCID: PMC5794726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/08/2017] [Indexed: 06/08/2023] Open
Abstract
Accumulating evidences have illuminated that an amount of microRNAs are involved in human diseases including hepatocellular carcinoma (HCC). In this study, we found that the expression of miR-382 in HCC tissues was down-regulated compared with the non-cancerous tissues. Over-expression of miR-382 could significantly inhibit the migration and invasion of HCC cells in vitro and in vivo. Bioinformatic algorithms and luciferase reporter assays suggested that Golgi Membrane Protein 1 (GOLM1) was a direct target of miR-382. Interestingly, we found the down-regulation of GOLM1 in HCC cells could rescue these cells from miR-382-mediated suppression of migration and invasion. Our findings might demonstrate that miR-382 inhibited the metastasis of HCC by targeting GOLM1. Furthermore, cox proportional hazards analyses suggested that low expression of miR-382 was an independent prognostic factor for the HCC patients. In conclusion, our results highlighted that miR-382, a novel prognostic factor, target GOLM1 to inhibit metastasis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Shukun Zhang
- Department of Pathology, Weihai Municipal HospitalShandong, China
| | - Wenmin Ge
- Department of Pathology, Weihai Municipal HospitalShandong, China
| | - Gangyong Zou
- Department of Pathology, Weihai Municipal HospitalShandong, China
| | - Lin Yu
- Department of Pathology, Weihai Municipal HospitalShandong, China
| | - Yongcun Zhu
- Department of Pathology, Weihai Municipal HospitalShandong, China
| | - Qiujing Li
- Department of Pathology, Weihai Municipal HospitalShandong, China
| | - Yujie Zhang
- Department of Pathology, Weihai Municipal HospitalShandong, China
| | - Zhanli Wang
- Department of Stomatology, Weihai Municipal HospitalShandong, China
| | - Tao Xu
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan 250021, Shandong, China
| |
Collapse
|
9
|
Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis 2017; 8:e2665. [PMID: 28277544 PMCID: PMC5386575 DOI: 10.1038/cddis.2017.83] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Abstract
Recently, a novel class of transcripts, long noncoding RNAs (lncRNAs), is being identified at a rapid pace. These RNAs have critical roles in diverse biological processes, including tumorigenesis. One of them, BLACAT1, a cancer-associated long noncoding RNA, exerts regulatory functions in various biological processes in cancer cells, however, the role of BLACAT1 in colon cancer remains unclear. Our experiments showed that increased BLACAT1 was an independent unfavorable prognostic indicator for colorectal cancer, and revealed that BLACAT1 knockdown significantly repressed proliferation, both in vitro and in vivo. Mechanistic investigations demonstrated that BLACAT1 had a key role in G1/G0 arrest, and showed that BLACAT1 can repress p15 expression by binding to EZH2, thus contributing to the regulation of CRC cell cycle and proliferation. Our results suggest that BLACAT1, as a cell cycle regulator, may serve as a potential target for colon cancer prevention and treatment in human CRC.
Collapse
|