1
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
2
|
Haghighi R, Castillo-Acobo RY, H Amin A, Ehymayed HM, Alhili F, Mirzaei M, Mohammadzadeh Saliani S, Kheradjoo H. A thorough understanding of the role of lncRNA in prostate cancer pathogenesis; Current knowledge and future research directions. Pathol Res Pract 2023; 248:154666. [PMID: 37487316 DOI: 10.1016/j.prp.2023.154666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/26/2023]
Abstract
In the entire world, prostate cancer (PCa) is one of the most common and deadly cancers. Treatment failure is still common among patients, despite PCa diagnosis and treatment improvements. Inadequate early diagnostic markers and the emergence of resistance to conventional therapeutic approaches, particularly androgen-deprivation therapy, are the causes of this. Long non-coding RNAs (lncRNAs), as an essential group of regulatory molecules, have been reported to be dysregulated through prostate tumorigenesis and hold great promise as diagnostic targets. Besides, lncRNAs regulate the malignant features of PCa cells, such as proliferation, invasion, metastasis, and drug resistance. These multifunctional RNA molecules interact with other molecular effectors like miRNAs and transcription factors to modulate various signaling pathways, including AR signaling. This study aimed to compile new knowledge regarding the role of lncRNA through prostate tumorigenesis in terms of their effects on the various malignant characteristics of PCa cells; in light of these characteristics and the significant potential of lncRNAs as diagnostic and therapeutic targets for PCa. AVAILABILITY OF DATA AND MATERIALS: Not applicable.
Collapse
Affiliation(s)
- Ramin Haghighi
- Department of Urology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnord, Iran
| | | | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | | | - Farah Alhili
- Medical technical college, Al-Farahidi University, Iraq
| | - Mojgan Mirzaei
- Department of Anatomy, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | |
Collapse
|
3
|
Huang G, Jiang Z, Zhu W, Wu Z. Exosomal circKDM4A Induces CUL4B to Promote Prostate Cancer Cell Malignancy in a miR-338-3p-Dependent Manner. Biochem Genet 2023; 61:390-409. [PMID: 35930171 DOI: 10.1007/s10528-022-10251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 01/24/2023]
Abstract
Circular RNA lysine demethylase 4A (circKDM4A) is also named circ_0012098 and its abnormal expression has been confirmed in serum exosomes of prostate cancer (PC) patients. However, whether PC progression involves the exosomal circ_0012098 remains unknown. RNA expression of circKDM4A, microRNA-338-3p (miR-338-3p) and cullin 4B (CUL4B) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot. The positive expression rate of nuclear proliferation marker (ki-67) was analyzed by immunohistochemistry assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to identify the interaction between miR-338-3p and circKDM4A or CUL4B. Mouse model assay was performed to determine the effect of exosomal circKDM4A on tumorigenesis in vivo. CircKDM4A expression was significantly upregulated in the serum exosomes from PC patients compared with the exosomes from healthy volunteers. Exosomes treatment promoted the proliferation, migration and invasion of PC cells but inhibited apoptosis; however, these effects were attenuated after circKDM4A knockdown. Meanwhile, circKDM4A depletion restored exosome-increased circKDM4A expression. Additionally, circKDM4A acted as a miR-338-3p sponge, and miR-338-3p bound to CUL4B in PC cells. CircKDM4A regulated the effect of exosome-induced PC cell malignancy by interacting with miR-338-3p and CUL4B. Moreover, circKDM4A silencing relieved exosome-induced tumor growth in vivo. Exosomal circKDM4A promoted PC malignant progression by the miR-338-3p/CUL4B axis, providing a therapeutic target for PC.
Collapse
Affiliation(s)
- Guangyi Huang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China.
| | - Zeping Jiang
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Wuan Zhu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| | - Zhiyue Wu
- Department of Urology Surgery, the Fourth Affiliated Hospital Zhejiang University School of Medicine, Shangcheng Dadao, Yiwu City, 322001, Zhejiang Province, China
| |
Collapse
|
4
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
5
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Ding X, Sun J, Zhang X. Circ_0076305 facilitates prostate cancer development via sponging miR-411-5p and regulating PGK1. Andrologia 2022; 54:e14406. [PMID: 35238066 DOI: 10.1111/and.14406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022] Open
Abstract
Abnormal expression of circular RNA (circRNA) is tightly linked to cancer progression. In this study, we aimed to investigate the biological role of circ_0076305 in prostate cancer (PCa). RT-qPCR was utilized to examine circ_0076305, microRNA-411-5p (miR-411-5p) and phosphoglycerate kinase 1 (PGK1) expression in PCa tissues and cells. CCK-8 assay, EdU assay, wound-healing assay and flow cytometry were executed to investigate the regulatory function of circ_0076305 on the proliferation, migration and apoptosis of PCa cells. Western blot (WB) assay was applied for measuring the protein levels. The effect of circ_0076305 on cellular glycolysis was examined using commercial kits. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted for confirming the association between miR-411-5p and circ_0076305 or PGK1. The role of circ_0076305 in vivo was detected via establishing mice xenograft model. Circ_0076305 was highly expressed in PCa. Circ_0076305 silencing could repress cell growth, migration and glycolysis while triggered apoptosis in PCa cells. MiR-411-5p was targeted by circ_0076305, and miR-411-5p suppression counteracted the influence of circ_0076305 silencing in PCa cells. Additionally, miR-411-5p directly targeted PGK1, and miR-411-5p upregulation restrained PCa cell malignant behaviours via reducing PGK1. Mechanically, circ_0076305 sponged miR-411-5p to affect PGK1 expression. Importantly, circ_0076305 interference inhibited tumour growth in vivo. Circ_0076305 served as a novel oncogene PCa progression through regulation of miR-411-5p/PGK1 axis.
Collapse
Affiliation(s)
- Xiqi Ding
- Urology Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Sun
- Urology Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xiao Zhang
- Urology Department, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Wu J, Chen H, Li J, Li X, Cao J, Qi M. Long non-coding RNA LINC01296 acts as a migration and invasion promoter in head and neck squamous cell carcinoma and predicts poor prognosis. Bioengineered 2021; 12:5607-5619. [PMID: 34515611 PMCID: PMC8806914 DOI: 10.1080/21655979.2021.1967033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long non-coding RNA (lncRNAs) can participate in gene expression regulation. LINC01296 is abnormally expressed in different tumors and promotes tumorigenesis and development. However, the role of LINC01296 in head and neck squamous cell carcinoma (HNSCC) remains not entirely clear. Thus, to explore LINC01296 expression, biological function and potential mechanism in HNSCC, we used GEPIA and GEO database. QRT-PCR was used to detect the knockout efficiency by LINC01296 inhibition with siRNA. Transwell assay was used to detect the migration and invasion capacity of tumor cells. Then enrichment and immunophenotype correlation analyses were carried out to explore the LINC01296 mechanism in HNSCC. To investigate why LINC01296 was up-regulated in HNSCC, DNA methylation analysis was performed using the DiseaseMeth database. LINC01296 expression was notably up-regulated in HNSCC, which was associated with promoter hypomethylation. Also, it was positively correlated with the HNSCC pathological stage and patients with higher LINC01296 expression levels had a poor prognosis. LINC01296 silencing inhibits HNSCC cell migration and invasion. LINC01296 also participate in the HNSCC progression mainly through protein phosphorylation and microtubule-based process regulation. Overall, LINC01296 was highly expressed in HNSCC, promoted tumor cells’ migration and invasion, and might be a potential diagnostic and prognostic marker in HNSCC patients.
Collapse
Affiliation(s)
- Jing Wu
- Department of Stomatology, The People's Hospital of Longhua District, Shenzhen, China
| | - Hua Chen
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Li
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyu Li
- Department of Stomatology, The People's Hospital of Longhua District, Shenzhen, China
| | - Jun Cao
- Department of Stomatology, The People's Hospital of Longhua District, Shenzhen, China
| | - Min Qi
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Xu J, Zhang Z, Shen D, Zhang T, Zhang J, De W. Long noncoding RNA LINC01296 plays an oncogenic role in colorectal cancer by suppressing p15 expression. J Int Med Res 2021; 49:3000605211004414. [PMID: 33983053 PMCID: PMC8127761 DOI: 10.1177/03000605211004414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To examine the role of the long noncoding RNA LINC01296 in colorectal carcinoma (CRC) and to explore the underlying mechanism. METHODS We detected LINC01296 expression levels in a cohort of 51 paired CRC and normal tissues. We also assessed the effects of LINC01296 on cell proliferation and apoptosis in CRC cells in vitro, and measured its effect on tumor growth in an in vivo mouse model. We identified the potential downstream targets of LINC01296 and assessed its regulatory effects. RESULTS Expression levels of LINC01296 were elevated in 37/51 CRC tissues compared with the corresponding normal tissues and were significantly associated with tumor stage, lymph node metastasis, and distant metastasis. Knockdown of LINC01296 using antisense oligonucleotides inhibited cell proliferation and promoted apoptosis of colon cancer cells in vitro and inhibited tumor growth in vivo. Knockdown of LINC01296 also significantly increased the gene expression of p15 in colon cancer cells. LINC01296-specific suppression of p15 was validated by the interaction between enhancer of zeste homolog 2 and LINC01296. CONCLUSION Overexpression of LINC01296 suppressed the expression of p15 leading to CRC carcinogenesis. These findings may provide the basis for novel future CRC-targeted therapies.
Collapse
Affiliation(s)
- Jianing Xu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Emergency Medicine, Jiangyin People's Hospital, Jiangyin, Jiangsu, China
| | - Zhehao Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Shen
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, Jiangsu, China
| | - Ting Zhang
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, Jiangsu, China
| | - Jinsong Zhang
- Department of Emergency Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Zhang H, Li M, Zhang J, Shen Y, Gui Q. Exosomal Circ-XIAP Promotes Docetaxel Resistance in Prostate Cancer by Regulating miR-1182/TPD52 Axis. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1835-1849. [PMID: 33976535 PMCID: PMC8106459 DOI: 10.2147/dddt.s300376] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
Background Exosomal circular RNAs (circRNAs) are involved in the pathogenesis of prostate cancer (PCa) and chemotherapy resistance. This research aimed to explore the function and molecular mechanism of circRNA X-linked inhibitor of apoptosis (circ-XIAP) in docetaxel (DTX) resistance of PCa. Methods The expression of circ-XIAP, microRNA-1182 (miR-1182), tumor protein D52 (TPD52) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Exosomes were detected with transmission electron microscopy (TEM). Cluster of differentiation 63 (CD63), cluster of differentiation 9 (CD9) and TPD52 protein levels were detected by Western blot (WB). FIfty percent inhibitory concentration (IC50) of DTX and cell viability were determined using Cell Counting Kit-8 (CCK-8) assay. Colony formation assay was applied to assess colony-forming ability. Cell cycle distribution and apoptosis were analyzed by flow cytometry. Transwell assay was used for measuring cell migration and invasion. Dual-reporter luciferase assay was performed to confirm the interaction between miR-1182 and circ-XIAP or TPD52. The role of circ-XIAP in vivo was confirmed via the mice xenograft model. Results Circ-XIAP and TPD52 were upregulated and miR-1182 was downregulated in DTX-resistant PCa tissue specimens and cell lines. Circ-XIAP was also overexpressed in exosomes from DTX-resistant cells and could be transmitted via exosomes. Circ-XIAP knockdown enhanced DTX sensitivity by suppressing DTX-resistant cell proliferation, migration and invasion and inducing cell cycle arrest and apoptosis. Circ-XIAP directly targeted miR-1182, and the effects of circ-XIAP knockdown were reversed by downregulating miR-1182 in DTX-resistant cells. TPD52 was the target of miR-1182, and its upregulation weakened the promotive effect of miR-1182 on DTX sensitivity. Importantly, circ-XIAP depletion inhibited tumor growth and increased DTX sensitivity in vivo. Conclusion Exosomal circ-XIAP promoted DTX resistance of PCa by regulating miR-1182/TPD52 axis, providing a promising therapeutic target for PCa chemotherapy.
Collapse
Affiliation(s)
- Hui Zhang
- College of Medical, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Minghui Li
- College of Medical, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Jing Zhang
- College of Medical, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Yanbing Shen
- Department of Urology, The Central Hospital of Zhumadian, Zhumadian, Henan, People's Republic of China
| | - Qi Gui
- Department of Urology, The Central Hospital of Zhumadian, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
10
|
Zhao H, Dong H, Wang P, Zhu H. Long non-coding RNA SNHG17 enhances the aggressiveness of C4-2 human prostate cancer cells in association with β-catenin signaling. Oncol Lett 2021; 21:472. [PMID: 33907582 PMCID: PMC8063240 DOI: 10.3892/ol.2021.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Long non-coding (lnc) RNAs have emerged as important regulators of cancer development and progression. Several lncRNAs have been reported to be associated with prostate cancer (PCa); however, the involvement of lncRNA SNHG17 in PCa remains unclear. In the present study, the mRNA expression level of SNHG17 in 58 pairs of PCa tumor samples and adjacent non-tumor tissues, as well as in PCa tumor cell lines was analyzed. The regulatory effect of SNHG17 on the oncogenic phenotypes of the C4-2 tumor cell line was also investigated. The clinicopathological analysis revealed that SNHG17 mRNA expression level was increased in the PCa tumor samples, and its high expression levels were associated with poor patient outcomes, indicating that SNHG17 may act as a biomarker for the prognosis of PCa. SNHG17 mRNA expression level was also increased in different PCa tumor cell lines. Functionally, SNHG17 increased C4-2 tumor cell growth and aggressiveness by stimulating tumor cell proliferation, survival, invasion and resistance to chemotherapy. Furthermore, SNHG17 promoted in vivo tumor growth in a xenograft mouse model. Notably, the SNHG17-induced in vitro and in vivo oncogenic effects were associated with activation of the β-catenin pathway. The results from the present study revealed that lncRNA SNHG17 could be an important regulator in the oncogenic properties of human PCa and may; therefore, represent a potential PCa therapeutic target.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Haijing Dong
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Peng Wang
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
11
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
12
|
Serum ProGRP as a novel biomarker of bone metastasis in prostate cancer. Clin Chim Acta 2020; 510:437-441. [DOI: 10.1016/j.cca.2020.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/24/2022]
|
13
|
Jiang G, Su Z, Liang X, Huang Y, Lan Z, Jiang X. Long non-coding RNAs in prostate tumorigenesis and therapy (Review). Mol Clin Oncol 2020; 13:76. [PMID: 33005410 DOI: 10.3892/mco.2020.2146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancy. Although there have been many advances in PCa diagnosis and therapy, the concrete mechanism remains unknown. Long non-coding RNAs (lncRNAs) are novel biomarkers associated with PCa, and their dysregulated expression is closely associated with risk stratification, diagnosis and carcinogenesis. Accumulating evidence has suggested that lncRNAs play important roles in prostate tumorigenesis through relevant pathways, such as androgen receptor interaction and PI3K/Akt. The present review systematically summarized the potential clinical utility of lncRNAs and provided a novel guide for their function in PCa.
Collapse
Affiliation(s)
- Ganggang Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Zhengming Su
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xue Liang
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Yiqiao Huang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Ziquan Lan
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| | - Xianhan Jiang
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China.,Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510700, P.R. China
| |
Collapse
|
14
|
Cao C, Sun G, Liu C. Long non-coding RNA SNHG6 regulates the sensitivity of prostate cancer cells to paclitaxel by sponging miR-186. Cancer Cell Int 2020; 20:381. [PMID: 32782439 PMCID: PMC7412850 DOI: 10.1186/s12935-020-01462-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
Background Chemo-resistance is one of the main obstacles in the treatment of prostate cancer (PCa). Long non-coding RNA small nucleolar RNA host gene 6 (SNHG6) is involved in the chemo-resistance of various tumors. We aim to survey the role and underlying molecular mechanism of SNHG6 in PCa resistance to paclitaxel (PTX). Methods The expression of SNHG6 and miR-186 was detected using quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion, and apoptosis of PTX-resistant PCa cells were determined via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), transwell assay, or flow cytometry assay. Protein levels of CyclinD1, matrix metalloproteinase 9 (MMP9), Vimentin, E-cadherin, Cleaved-caspase-3 (Cleaved-casp-3) Cleaved-caspase-9 (Cleaved-casp-9), Multidrug Resistance associated Protein 1 (MRP1), and multidrug resistance-1 (MDR1) were assessed by western blot analysis. The relationship between SNHG6 and miR-186 were confirmed by dual-luciferase reporter assay. The role of SNHG6 in vivo was confirmed by xenograft tumor model. Results SNHG6 expression was increased and miR-186 expression was reduced in drug-resistant PCa tissues and cells. SNHG6 knockdown elevated PTX-resistant PCa cells sensitivity to PTX in vitro and in vivo, and repressed proliferation, migration, and invasion of PTX-resistant PCa cells in vitro. Importantly, SNHG6 acted as a sponge of miR-186. Furthermore, miR-186 downregulation reversed SNHG6 silencing-mediated cell sensitivity to PTX, proliferation, migration, and invasion in PTX-resistant PCa cells. Conclusions SNHG6 knockdown elevated the sensitivity of PTX-resistant PCa cells to PTX by sponging miR-186, indicating that SNHG6 might be a therapeutic target for PCa.
Collapse
Affiliation(s)
- Chunhui Cao
- Department of Urology, The Second People's Hospital of Taizhou, No. 27, Jiankang Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| | - Guanghai Sun
- Department of Urology, The Second People's Hospital of Taizhou, No. 27, Jiankang Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| | - Chunlin Liu
- Department of Urology, The Second People's Hospital of Taizhou, No. 27, Jiankang Road, Jiangyan District, Taizhou, 225500 Jiangsu China
| |
Collapse
|
15
|
Saeidi F, Tanha K, Davoodabadi Farahani M, Sohrabi E, Moradi Y, Khani P. The Effect of LINC01296 Expression in Patients with Cancer: A Systematic Review and Meta-Analysis. Asian Pac J Cancer Prev 2020; 21:2189-2195. [PMID: 32856843 PMCID: PMC7771938 DOI: 10.31557/apjcp.2020.21.8.2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Recently has been suggested that LINC01296 has an important role in tumor-promoting in different malignancies. We performed first meta-analysis to assess the association between the LINC01296 expression and clinicopathological criteria and the survival of patients with cancers. Methods: Relevant articles Identified by PubMed, EMBASE, Web of Science, and Scopus searching between December 2000 and 28 December 2018. Binomial data were evaluated by the odds ratio (OR) as the rapid statistic. The association between overall survival (OS) and the LINC01296 expression was evaluated using pooling the hazard ratio (HR) with its corresponding 95% confidence interval (CI). Results: Finally, 9 studies with 720 patients with cancer were included. The expression of LINC01296 showed a significant positive association with TNM stage (OR = 2.67, 95% CI = 1.83-3.88), tumor stage (OR= 2.22, 95% CI= 1.34-3.66) and lymph node metastasis (OR = 3.07, 95% CI = 2.23-4.21). A shorter OS was significantly associated with the expression of LINC01296 (HR = 3.95, 95% CI = 2.65-5.25) and lymph node metastasis (HR = 2.39, 95% CI =1.16-3.63). The OS did not show significant association with gender (HR = 0.83, 95% CI = -0.63-2.30) and tumor stage (HR= 2.66, 95% CI= -0.22-5.54). Conclusion: In conclusion, the results of this meta-analysis suggest that the expression of LINC01296 might be considered as a potential biomarker in patients with cancer.
Collapse
Affiliation(s)
- Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kiarash Tanha
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Sohrabi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yousef Moradi
- Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Pouria Khani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
16
|
Zeng K, Xie W, Huang J, Yang J, Deng K, Luo X. PAX3 silencing inhibits prostate cancer progression through the suppression of the TGF-β/Smad signaling axis. Cell Biol Int 2020; 44:2131-2139. [PMID: 32672875 DOI: 10.1002/cbin.11421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 01/20/2023]
Abstract
Multiple studies have confirmed the pro-oncogenic effects of PAX3 in an array of cancers, but its role in prostate cancer (PCa) remains largely undefined. The aim of this study is to investigate the role of PAX3 in PCa. PAX3 expression was compared between PCa tumor tissue and nontumor tissues and PCa cell lines and normal prostate epithelial cells (PNT2) by western blot analysis and immunohistochemistry staining. MTT and immunofluorescence assays were used to detect PCa cell proliferation. Flow cytometry was used to evaluate cell apoptosis in PCa. Transwell assays were used for the determination of cell migration and PCa cell invasion. PAX3 expression was higher in PCa tissues and human PCa cell lines. Moreover, PAX3 silencing inhibited the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of PCa cells, and increased the rates of apoptosis. PAX3 silencing inhibited transforming growth factor-β (TGF-β)/Smad signaling in PCa cells. The effects of si-PAX3 on the proliferation, apoptosis, metastasis, and EMT of PCa cells were alleviated by TGF-β1 treatment. PAX3 silencing inhibits PCa progression through the inhibition of TGF-β/Smad signaling. This reveals PAX3 as a novel biomarker and therapeutic target for future PCa treatments.
Collapse
Affiliation(s)
- Ke Zeng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Wenxian Xie
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Jun Huang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Jian Yang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Kefei Deng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Xiaohui Luo
- Department of Urology, Baoji Central Hospital, Baoji, Shaanxi, China
| |
Collapse
|
17
|
Chen F, Liu L, Wang S. Long non-coding RNA NORAD exhaustion represses prostate cancer progression through inhibiting TRIP13 expression via competitively binding to miR-495-3p. Cancer Cell Int 2020; 20:323. [PMID: 32694945 PMCID: PMC7368683 DOI: 10.1186/s12935-020-01371-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/20/2020] [Indexed: 12/20/2022] Open
Abstract
Background Prostate cancer (PCa) is a malignant heterogeneous tumor that threatens men's health. Long non-coding RNA activated by DNA damage (NORAD) and microRNA-495-3p (miR-495-3p) have been revealed to be concerned with the tumorigenesis and progression of diverse cancers. Nevertheless, the regulatory mechanism between NORAD and miR-495-3p in PCa is unclear. Methods The expression of NORAD, miR-495-3p, and thyroid hormone receptor interactor 13 (TRIP13) mRNA was detected with quantitative real-time polymerase chain reaction (qRT-PCR). The levels of Bcl-2, Bax, Cleaved-casp-3, TRIP13, cyclin D1, and PCNA were detected through western blot analysis. The proliferation, apoptosis, migration, and invasion of PCa cells were assessed through 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), flow cytometry, or transwell assays. The relationship between NORAD or TRIP13 and miR-495-3p was confirmed via dual-luciferase reporter, RIP, or RNA pull-down assays. Results NORAD and TRIP13 were upregulated while miR-495-3p was downregulated in PCa tissues and cells. Both NORAD silencing and miR-495-3p upregulation accelerated cell apoptosis and curbed cell proliferation, migration, and invasion in PCa cells. Also, NORAD silencing repressed tumor growth in vivo. Notably, NORAD modulated TRIP13 expression by competitively binding to miR-495-3p. Furthermore, miR-495-3p repression reversed NORAD knockdown-mediated effects on the malignant behaviors of PCa cells. Moreover, TRIP13 enhancement overturned the effects of miR-495-3p overexpression on the proliferation, apoptosis, migration, and invasion of PCa cells. Conclusion NORAD depletion inhibited PCa advancement via the miR-495-3p/ TRIP13 axis, which provided a potential tactic for PCa treatment.
Collapse
Affiliation(s)
- Fengling Chen
- Department of Urology, Huaihe Hospital, Henan University, Kaifeng, 475000 Henan China
| | - Ling Liu
- Department of Surgery, Huaihe Hospital, Henan University, No. 115, Ximen Street, Longting District, Kaifeng, 475000 Henan China
| | - Shuya Wang
- Department of Surgery, Huaihe Hospital, Henan University, No. 115, Ximen Street, Longting District, Kaifeng, 475000 Henan China
| |
Collapse
|
18
|
Feng W, Zhai C, Shi W, Zhang Q, Yan X, Wang J, Wang Q, Li M. Clinicopathological and prognostic value of LINC01296 in cancers: a meta-analysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3315-3321. [PMID: 31385542 DOI: 10.1080/21691401.2019.1648284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: The long intergenic non-coding RNA 01296 (LINC01296) has been reported to be overexpressed in multiple tumours. However, the role of LINC01296 in clinicopathologic and prognostic value in cancers remains completely unknown. The aim of the present meta-analysis was to comprehensively elucidate the correlation between LINC01296 with clinicopathological features and survival outcomes in tumours. Methods: Electronic databases of PubMed, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang Database were used to search relevant studies. The role of LINC01296 in cancers was evaluated by pooled hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (CIs). Results: In total, nine studies compromising 720 participants were enrolled in this analysis. The pooled results showed increased LINC01296 expression could predict unfavourable overall survival (OS) (HR = 1.89, 95%CI = 1.47-2.43, p < .001). Additionally, elevated LINC01296 expression was correlated with clinical stage (OR = 2.95, 95%CI = 2.13-4.08, p < .001), lymph node metastasis (OR = 2.76, 95%CI = 2.00-3.81, p < .001), tumour size (OR = 2.80, 95%CI = 1.77-4.41, p < .001), and tumour differentiation (OR = 2.11, 95%CI = 1.36-3.27, p < .001) in patients with cancers. Conclusion: The results of this meta-analysis indicated LINC01296 was a novel biomarker for prognosis and clinicopathological parameters in cancers.
Collapse
Affiliation(s)
- Wei Feng
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Cui Zhai
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Wenhua Shi
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Qianqian Zhang
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Xin Yan
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Jian Wang
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Qingting Wang
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| | - Manxiang Li
- a Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , Shaanxi , China
| |
Collapse
|
19
|
Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis 2019; 10:792. [PMID: 31624242 PMCID: PMC6797747 DOI: 10.1038/s41419-019-2028-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023]
Abstract
Prostate cancer (PCa) is one of the major men's malignancies with high mortality worldwide. Circular RNAs (circRNAs) have been shown to serve as essential regulators in human cancers. CircRNA can exert their functions by cooperating with their host genes. In the present study, microarray analysis revealed an upregulated mRNA in PCa samples. X-linked inhibitor of apoptosis protein (XIAP), a key regulator in the progression of human cancers. Through bioinformatics analysis, we determined that XIAP is a host gene for circRNA0005276. Therefore, this study focused on the interaction between circ0005276 and XIAP as well as their functions in PCa progression. The upregulation of XIAP and circ0005276 was determined in PCa tissues and cell lines. Moreover, we confirmed the positive regulation of circ0005276 on XIAP expression. Functionally, we validated that circ0005276 and XIAP promoted cell proliferation, migration and epithelial-mesenchymal transition. Mechanistically, we verified that circ0005276 interacted with FUS binding protein (FUS) so as to activate the transcription of XIAP. Rescue assays were conducted to determine the crucial role of XIAP in circ0005276 and FUS-mediated PCa cellular processes. Collectively, our study revealed the mechanism and function of circ0005276 and its host gene XIAP in PCa progression.
Collapse
|
20
|
Wo Q, Zhang D, Hu L, Lyu J, Xiang F, Zheng W, Shou J, Qi X. Long noncoding RNA SOX2-OT facilitates prostate cancer cell proliferation and migration via miR-369-3p/CFL2 axis. Biochem Biophys Res Commun 2019; 520:586-593. [PMID: 31623830 DOI: 10.1016/j.bbrc.2019.09.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023]
Abstract
Accepted as crucial participators in human malignancies, long noncoding RNAs (lncRNAs) have been proven to exert significant function on the complicated processes of cancer progression. Although existing investigations have revealed the oncogenic role of lncRNA SOX2 overlapping transcript (SOX2-OT) in different kinds of cancers, such as osteosarcoma and cholangiocarcinoma, the potential role of it in prostate cancer (PC) is poorly understood. This study was the first attempt to decipher the underlying regulatory mechanism of SOX2-OT in PC. According to the data from this study, SOX2-OT expression was conspicuously elevated in PC tissues and cells. Silenced SOX2-OT could repress PC cell proliferation and migration. Besides, mechanism assays manifested that SOX2-OT bound with miR-369-3p and negatively correlated with miR-369-3p in PC. Additionally, miR-369-3p was confirmed to elicit suppressive impact on PC progression. What's more, cofilin 2 (CFL2) was testified to be a downstream target gene of miR-369-3p. Final rescue tests uncovered that CFL2 upregulation or miR-369-3p inhibition could largely restore SOX2-OT knockdown-mediated function on PC progression. To sum up, SOX2-OT accelerates cell proliferation and migration by targeting miR-369-3p/CFL2 axis in PC.
Collapse
Affiliation(s)
- Qijun Wo
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Linyi Hu
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jia Lyu
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Fei Xiang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Wei Zheng
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Jiafeng Shou
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaolong Qi
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China; Department of Urology, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
21
|
Lin X, Kapoor A, Gu Y, Chow MJ, Xu H, Major P, Tang D. Assessment of biochemical recurrence of prostate cancer (Review). Int J Oncol 2019; 55:1194-1212. [PMID: 31638194 PMCID: PMC6831208 DOI: 10.3892/ijo.2019.4893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The assessment of the risk of biochemical recurrence (BCR) is critical in the management of males with prostate cancer (PC). Over the past decades, a comprehensive effort has been focusing on improving risk stratification; a variety of models have been constructed using PC-associated pathological features and molecular alterations occurring at the genome, protein and RNA level. Alterations in RNA expression (lncRNA, miRNA and mRNA) constitute the largest proportion of the biomarkers of BCR. In this article, we systemically review RNA-based BCR biomarkers reported in PubMed according to the PRISMA guidelines. Individual miRNAs, mRNAs, lncRNAs and multi-gene panels, including the commercially available signatures, Oncotype DX and Prolaris, will be discussed; details related to cohort size, hazard ratio and 95% confidence intervals will be provided. Mechanistically, these individual biomarkers affect multiple pathways critical to tumorigenesis and progression, including epithelial-mesenchymal transition (EMT), phosphatase and tensin homolog (PTEN), Wnt, growth factor receptor, cell proliferation, immune checkpoints and others. This variety in the mechanisms involved not only validates their associations with BCR, but also highlights the need for the coverage of multiple pathways in order to effectively stratify the risk of BCR. Updates of novel biomarkers and their mechanistic insights are considered, which suggests new avenues to pursue in the prediction of BCR. Additionally, the management of patients with BCR and the potential utility of the stratification of the risk of BCR in salvage treatment decision making for these patients are briefly covered. Limitations will also be discussed.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anil Kapoor
- The Research Institute of St. Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mathilda Jing Chow
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
22
|
Xu H, Zheng JF, Hou CZ, Li Y, Liu PS. Up-regulation of long intergenic noncoding RNA 01296 in ovarian cancer impacts invasion, apoptosis and cell cycle distribution via regulating EMT. Cell Signal 2019; 62:109341. [DOI: 10.1016/j.cellsig.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
|
23
|
Dai C, Dai C, Ni H, Xu Z. Prognostic value of long non-coding RNA 01296 expression in human solid malignant tumours: a meta-analysis. Postgrad Med J 2019; 96:43-52. [PMID: 31444240 DOI: 10.1136/postgradmedj-2019-136684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/04/2022]
Abstract
Long intergenic non-coding RNA 01296 (LINC01296) has been reported to play an important role in many human malignancies, but a consistent perspective has not been established now. To explore the prognostic value of LINC01296 in different types of human solid malignant tumours, we performed this meta-analysis.An electronic search of PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, Cochrane Library, Chinese Biological Medical Literature database and WanFang database was applied to select eligible literatures. Pooled ORs or HRs with their 95% CIs were calculated to estimate the effects.A total of 559 patients from nine eligible studies were enrolled in this meta-analysis. The results revealed that high LINC01296 expression was significantly related to larger tumour size (OR 3.42, 95% CI 2.08 to 5.63), lymph node metastasis (OR 3.03, 95% CI 2.01 to 4.57) and advanced tumor-node-metastasis (TNM) stage (OR 4.41, 95% CI 2.65 to 7.34). Moreover, we found that elevated LINC01296 expression predicted a poor outcome for overall survival (HR 1.78, 95% CI 1.48 to 2.14) and recurrence-free survival (HR 4.00, 95% CI 1.04 to 15.67).High expression levels of LINC01296 were associated with unfavourable clinical outcomes of patients with cancer. Our results indicated that LINC01296 could serve as a prognostic predictor in human solid malignant tumours.
Collapse
Affiliation(s)
- Chen Dai
- General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenguang Dai
- Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Ni
- Pathology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Xu
- General Surgery, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Liang C, Zhang Y, Zhang Y, Li R, Wang Z, Wei Z, Guo J. The prognostic value of LINC01296 in pan-cancers and the molecular regulatory mechanism in hepatocellular carcinoma: a comprehensive study based on data mining, bioinformatics, and in vitro validation. Onco Targets Ther 2019; 12:5861-5885. [PMID: 31410029 PMCID: PMC6650622 DOI: 10.2147/ott.s205853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background and aims This study aimed to clarify the prognostic role of LINC01296 in various cancers, and to evaluate its effect on proliferation, metastasis, and the cell cycle in hepatocellular carcinoma (HCC) by data mining, bioinformatics, and in vitro validation. Methods The prognostic role of LINC01296 in cancer patients was assessed by searching the PubMed, Embase, Web of Science, and Gene Expression Omnibus databases and calculating pooled hazard ratios (HRs) with 95% confidence intervals (CIs); this prognostic role was also evaluated using The Cancer Genome Atlas (TCGA). We detected LINC01296 expression in HCC cell lines, and lentivirus-mediated small interfering RNAs were used to silence LINC01296 in MHCC97H and Hep3B cells to explore the role of LINC01296 in cell proliferation, metastasis, and cell cycle progression with in vitro validation and bioinformatics. Results The results indicated that LINC01296 overexpression was associated with poor overall survival (OS) and disease-free survival (DFS) in various cancers; however, LINC01296 expression was not associated with recurrence-free survival (RFS). Similar results were found with TCGA, which showed that LINC01296 expression was associated with the pathologic stage, tumor size, and differentiation in Asian cancer patients. Additionally, bioinformatics analysis revealed expression of 394 related genes, which indicated that LINC01296 could be involved in the tumorigenesis and progression of HCC. In vitro gene silencing experiments indicated that LINC01296 downregulation repressed cell proliferation, cell cycle progression, and the metastatic potential of HCC through the regulation of BUB1, CCNA2, and CDK1 expression. Conclusion This study demonstrated that LINC01296 expression is related to poor OS and DFS in a variety of cancer types and that LINC01296 has an oncogenic role in HCC.
Collapse
Affiliation(s)
- Chaojie Liang
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Yongping Zhang
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Yu Zhang
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Ruihuan Li
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Zhimin Wang
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Zhigang Wei
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | - Jiansheng Guo
- Department of General Surgery, First Hospital/First Clinical College of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| |
Collapse
|
25
|
Wan Y, Li M, Huang P. LINC01296 promotes proliferation, migration, and invasion of HCC cells by targeting miR-122-5P and modulating EMT activity. Onco Targets Ther 2019; 12:2193-2203. [PMID: 30988624 PMCID: PMC6441465 DOI: 10.2147/ott.s197338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction Long noncoding RNAs (lncRNAs) play an important role in the origination and progression of hepatocellular carcinoma (HCC). However, the biological function of the long intergenic non-protein-coding RNA, LINC01296, in HCC remains unknown. Methods Here, we observed an increase in the expression levels of LINC01296 in HCC tissues and cell lines using reverse transcription quantitative PCR; these data were consistent with that obtained from The Cancer Genome Atlas database. Results A higher expression level was correlated with higher alpha fetoprotein levels, a larger tumor size, an advanced TNM stage, and a poorer overall survival rate. Upregulation of LINC01296 promoted the proliferation, migration, and invasion of HCC cells. Improvement of cell migration and invasion attributable to the overexpression of LINC01296 was related to an increase in epithelial–mesenchymal transition (EMT). Mechanistically, miR-122-5P can bind to LINC01296 and decrease its oncogenic effect. Conclusion Collectively, the results of this study revealed that LINC01296 is a tumor promoter that can promote the migration and invasion of HCC cells through EMT, while miR-122-5P is involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Yafeng Wan
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, People's Republic of China,
| | - Molin Li
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, People's Republic of China,
| | - Ping Huang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, People's Republic of China,
| |
Collapse
|
26
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 958] [Impact Index Per Article: 191.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
Hu X, Duan L, Liu H, Zhang L. Long noncoding RNA LINC01296 induces non-small cell lung cancer growth and progression through sponging miR-5095. Am J Transl Res 2019; 11:895-903. [PMID: 30899389 PMCID: PMC6413248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) played in authentic biological cell roles such as cell apoptosis, cycle, differentiation, development, migration and invasion. However, the expression pattern and function of a new lncRNA LINC01296 in non-small cell lung cancer (NSCLC) are unknown and need to be studied. In our study, we indicate that the expression of LINC01296 was overexpressed in NSCLC samples compared to adjacent non-tumor tissues. Ectopic expression of LINC01296 promoted NSCLC cell proliferation and migration. Moreover, we demonstrated that LINC01296 has a potential binding site for miR-5095 by using online program tool StarBase. Overexpression of LINC01296 inhibited the expression of miR-5095 in the A549 cell. Furthermore, the miR-5095 expression was downregulated in the NSCLC tissues than in the adjacent non-tumor tissues. In addition, we found that there is a negative correlation between miR-5095 expression and LINC01296 level in the NSCLC tissues. Overexpression of miR-5095 suppressed NSCLC cell proliferation and migration. Finally, we demonstrate that ectopic expression of LINC01296 promoted cell proliferation and migration via inhibiting miR-5095 expression. These results suggested that LINC01296 might act a role as an oncogene in the tumorigenesis and development of NSCLC.
Collapse
Affiliation(s)
- Xuefei Hu
- Department of Thoracic, Shanghai Pulmonary Hospital, Tongji University Shanghai 200433, China
| | - Liang Duan
- Department of Thoracic, Shanghai Pulmonary Hospital, Tongji University Shanghai 200433, China
| | - Hongcheng Liu
- Department of Thoracic, Shanghai Pulmonary Hospital, Tongji University Shanghai 200433, China
| | - Lei Zhang
- Department of Thoracic, Shanghai Pulmonary Hospital, Tongji University Shanghai 200433, China
| |
Collapse
|
28
|
Wang X, Wang L, Gong Y, Liu Z, Qin Y, Chen J, Li N. Long noncoding RNA LINC01296 promotes cancer-cell proliferation and metastasis in urothelial carcinoma of the bladder. Onco Targets Ther 2018; 12:75-85. [PMID: 30588032 PMCID: PMC6304073 DOI: 10.2147/ott.s192809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) play an important role in the tumorigenesis and progression of human cancer. This research was performed to investigate the role of LINC01296 in clinical characteristics, biological functions and molecular mechanisms of bladder cancer. Materials and methods In this study, expressions of LINC01296 in cancer tissues and normal tissues were firstly compared using the Gene Expression Profiling Interactive Analysis database. Subsequently, a microarray data analysis was performed to compare lncRNA and mRNA expression profiles in four pairs of human bladder cancer samples. Then, quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of LINC01296 in bladder cancer tissues. The association between LINC01296 expressions and clinicopathological characteristics of bladder cancer was analyzed by Kaplan–Meier analysis and the Cox proportional-hazard model. The biological functions and molecular mechanisms of LINC01296 in bladder cancer were studied by MTT assay, colony-formation assay, cell cycle analysis, transwell migration assay, wound healing assay, qRT-PCR analysis and Western blot assay. Results The expression of LINC01296 was significantly higher in most cancer tissues than that in adjacent normal tissues, and was positively correlated with clinical stages of the cancer (P=0.016), lymph node metastasis (P=0.034), and pathologic grades (P=0.012). The increased level of LINC01296 was associated with a poorer prognosis and shorter survival of the patients. Multivariate analysis showed that the LINC01296 expression was an independent predictor of overall survival in bladder cancer. Additionally, LINC01296 knockdown inhibited the proliferation, migration and progression of cell cycle of bladder cancer cells, and was involved in the regulation of epithelial-mesenchymal transition. Conclusion The findings of this study suggested that LINC01296 promotes progression of bladder cancer, and potentially acts as a biomarker and therapeutic target of bladder cancer.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| | - Lei Wang
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| | - Yanbing Gong
- Department of Science Research, Peking University Shougang Hospital, Beijing 100144, People's Republic of China
| | - Zhenzhen Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital and Institute, Beijing 100142, People's Republic of China
| | - Yingchao Qin
- Department of General Surgery, Chaoyang District Shuangqiao Hospital, Beijing 100024, People's Republic of China
| | - Jia Chen
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| | - Ningcheng Li
- Department of Urology, Peking University Shougang Hospital, Beijing 100144, People's Republic of China,
| |
Collapse
|
29
|
Liu B, Pan S, Xiao Y, Liu Q, Xu J, Jia L. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Exp Clin Cancer Res 2018; 37:316. [PMID: 30547804 PMCID: PMC6295061 DOI: 10.1186/s13046-018-0994-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) emerging as pivotal marker in the procession of cancer, including colorectal cancer (CRC). Abnormal O-glycosylation is a crucial modification during cancer malignancy. The aim of this work is to analyze the alteration of O-glycosylation involved in CRC progression. METHODS qRT-PCR is utilized to screen the differential linc01296 expression in CRC tissues and cell lines. Functionally, CRC cell proliferation, aggressiveness and apoptosis are measured through relevant experiments, including CCK8 assay, colony formation assay, transwell assay, western blot and flow cytometry. Dual-luciferase reporter gene assay and RIP assay confirm the direct interaction between linc01296 and miR-26a. The xenografts and liver metatstatic nude mice models are established to show the inner effect of linc01296. RESULTS Differential expression of linc01296 is confirmed and closely correlated with the malignancy of CRC cell lines and poor clinical prognosis. Moreover, alteration of linc01296 affects CRC cell proliferation, metastasis and chemoresistance to 5-fluorouracil (5-FU) in vitro. Mechanically, linc01296 acts as a direct target of miR-26a, and thereby influenced CRC malignancy. Our investigation corroborates that linc01296 functions as an endogenous sponge of miR-26a to regulate mucin1 (MUC1) expression, catalyzed by GALNT3, which modulates the activity of PI3K/AKT pathway. Interestingly, upregulated linc01296 promotes the tumorigensis, liver metastasis and chemoresistance of CRC cell lines in vivo. CONCLUSION These new findings indicate that linc01296/miR-26a/GALNT3 axis involves in the progression of CRC cells, illuminating the possible mechanism mediated by O-glycosylated MUC1 via PI3K/AKT pathway. This work renders potential diagnostic biomarkers and prospective therapeutic targets for CRC.
Collapse
Affiliation(s)
- Bing Liu
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044 Liaoning Province China
| | - Shimeng Pan
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044 Liaoning Province China
| | - Yang Xiao
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044 Liaoning Province China
| | - Qianqian Liu
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044 Liaoning Province China
| | - Jingchao Xu
- Department of General Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116027 Liaoning Province China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, 9 Lushunnan Road Xiduan, Dalian, 116044 Liaoning Province China
| |
Collapse
|
30
|
Liang Y, Dong B, Shen J, Ma C, Ma Z. Clinical significance of bromodomain-containing protein 7 and its association with tumor progression in prostate cancer. Oncol Lett 2018; 17:849-856. [PMID: 30655838 PMCID: PMC6313008 DOI: 10.3892/ol.2018.9665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is a common malignancy in males. The current study assessed the clinical significance of bromodomain-containing protein 7 (BRD7) and its association with PCa tumor progression. Serum and tissue expression levels of BRD7 were analyzed by reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic value of BRD7. Kaplan-Meier survival analysis and Cox regression analysis were performed to assess the prognostic performance of BRD7. The association of BRD7 with cell behavior was investigated by transfection with a pcDNA3.1-BRD7 vector. The results revealed that serum and tissue BRD7 expression levels were significantly decreased in PCa samples compared with normal controls (P<0.001). BRD7 expression was significantly associated with the pathological stage (P=0.037), lymph node metastasis (P=0.009) and TNM stage (P=0.010). An area under the ROC curve of 0.864 was obtained, with a sensitivity and specificity of 77.0 and 83.3%, respectively. Low BRD7 expression was significantly associated with a shorter survival time in both overall survival analysis (P=0.003) and cancer-specific survival analysis (P=0.029). Furthermore, BRD7 appeared to serve as an independent prognostic factor for PCa. The proliferation, migration and invasion of PCa cells were suppressed by BRD7 overexpression. In summary, downregulation of BRD7 in PCa may be involved in tumor progression and serve as an effective diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Yong Liang
- Department of Urology Surgery, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Baiping Dong
- Department of Urology Surgery, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Jiangwei Shen
- Department of Urology Surgery, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Caosheng Ma
- Department of Urology Surgery, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Zhongping Ma
- Department of Urology Surgery, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| |
Collapse
|
31
|
Wang L, Meng D, Wang Y, Hu J. Long non-coding RNA LINC01296 promotes esophageal squamous cell carcinoma cell proliferation and invasion by epigenetic suppression of KLF2. Am J Cancer Res 2018; 8:2020-2029. [PMID: 30416853 PMCID: PMC6220133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/15/2017] [Indexed: 06/09/2023] Open
Abstract
Dysregulated long non-coding RNAs (lncRNAs) are found in many types of tumors, including esophageal squamous cell carcinoma (ESCC); however, the pattern of expression and function of LINC01296 in esophageal squamous cell carcinoma are unknown. In the current study we showed that LINC01296 expression is significantly higher in ESCC tissues when compared with corresponding adjacent normal tissues. Higher LINC01296 expression was associated with lymph node metastasis, TNM stage, and worse overall survival rate in ESCC patients. Furthermore, functional assays in vitro demonstrated that knockdown of LINC01296 inhibited ESCC cell proliferation, colony formation, migration, and invasiveness. Moreover, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays demonstrated that LINC01296 promotes cell proliferation and invasion by epigenetic suppression of KLF2 expression via an interaction with EZH2 in ESCC cells. We also demonstrated that knockdown of LINC01296 inhibited cell growth and up-regulated KLF2 expression in vivo. These results indicate that LINC01296 acts as an oncogene and may serve as a potential target in ESCC treatment.
Collapse
Affiliation(s)
- Luming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang Province, China
| | - Di Meng
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang Province, China
| | - Yiqing Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang Province, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
32
|
Xu L, Wei B, Hui H, Sun Y, Liu Y, Yu X, Dai J. Positive feedback loop of lncRNA LINC01296/miR-598/Twist1 promotes non-small cell lung cancer tumorigenesis. J Cell Physiol 2018; 234:4563-4571. [PMID: 30240003 DOI: 10.1002/jcp.27235] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Emerging evidence has illustrated the vital roles of long noncoding RNAs (lncRNAs) in human cancers. However, the role of lncRNAs in non-small cell lung cancer (NSCLC) is still elusive and poorly understood. In the current study, our team conducted extensive experiments to identify the role of long intergenic nonprotein coding (LINC01296) on NSCLC tumorigenesis. The results illustrated that the elevated LINC01296 expression in NSCLC tissue specimens and cell lines were closely correlated with the poor prognosis of patients with NSCLC. Functional studies revealed that LINC01296 knockdown silenced by small interfering RNAs inhibited proliferation, accelerated apoptosis in vitro, and impaired tumor growth in vivo. Mechanical studies showed that INC01296 harbored miR-598, acting as a microRNA "sponge." Besides, miR-598 targeted the 3'-UTR of Twist1. Interestingly, transcription factor Twist1 could bind with the promoter of INC01296 and activate its transcriptional level. In summary, we conclude that INC01296/miR-598/Twist1 constitutes a positive feedback loop to promote the tumorigenesis of NSCLC, providing a novel insight and a valuable therapeutic strategy.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Bin Wei
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hongxia Hui
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuan Sun
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yangqing Liu
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaojuan Yu
- Department of Oncology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jian Dai
- Department of Orthopedics, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
33
|
Yuan Q, Zhang Y, Feng L, Jiang Y. Upregulated long noncoding RNA LINC01296 indicates a dismal prognosis for pancreatic ductal adenocarcinoma and promotes cell metastatic properties by affecting EMT. J Cell Biochem 2018; 120:552-561. [PMID: 30203487 DOI: 10.1002/jcb.27411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease that responds poorly to chemotherapy and radiotherapy and whose incidence has increased worldwide. Long noncoding RNAs have been demonstrated to play important roles in cancer initiation and progression. Long intergenic non-coding RNA 01296 (LINC01296) has been reported to be upregulated in several malignancies, but the clinical relevance and biological role of LINC01296 in PDAC are still unclear. METHODS RT-qPCR was performed to evaluate the expression of LINC01296 in 85 pared PDAC tissue samples and a panel of PDAC cell lines. The clinical value and prognostic role of LINC01296 in patients with PDAC were further explored. Furthermore, we explored the functional roles of LINC01296 depletion in PANC-1 and SW1990 cells, including cell proliferation, apoptosis, migration, invasion, and epithelial-to-mesenchymal transition (EMT). RESULTS LINC01296 was enhanced in PDAC tissues and cell lines, and this overexpression was correlated with advanced tumor stages and positive lymph node metastasis in patients with PDAC. In addition, upregulation of LINC01296 was an independent prognostic predictor for patients with PDAC after surgery. Moreover, silencing of LINC01296 followed by treatment with small interfering RNAs suppressed cell proliferation and promoted cell apoptosis by affecting the Bcl-2/caspase-3 pathway. Importantly, LINC01296 attenuation impaired the migratory and invasive potential partly by reversing EMT. CONCLUSIONS Overall, our work may help to develop a novel prognostic biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Qihua Yuan
- Department of Gastrointestinal Surgery, Yidu Central Hospital of Weifang, Qingzhou, Shandong Province, China
| | - Yuxia Zhang
- Department of Gastroenterology, Yidu Central Hospital of Weifang, Qingzhou, Shandong Province, China
| | - Lijun Feng
- Department of Pharmacy Intravenous Admixture Center, Yidu Central Hospital of Weifang, Qingzhou, Shandong Province, China
| | - Yuehong Jiang
- Department of Clinical Laboratory, Heilongjiang Provincial Hospital, Harbin, Heilongjiang Province, China
| |
Collapse
|
34
|
Lim MCJ, Baird AM, Aird J, Greene J, Kapoor D, Gray SG, McDermott R, Finn SP. RNAs as Candidate Diagnostic and Prognostic Markers of Prostate Cancer-From Cell Line Models to Liquid Biopsies. Diagnostics (Basel) 2018; 8:E60. [PMID: 30200254 PMCID: PMC6163368 DOI: 10.3390/diagnostics8030060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
The treatment landscape of prostate cancer has evolved rapidly over the past five years. The explosion in treatment advances has been witnessed in parallel with significant progress in the field of molecular biomarkers. The advent of next-generation sequencing has enabled the molecular profiling of the genomic and transcriptomic architecture of prostate and other cancers. Coupled with this, is a renewed interest in the role of non-coding RNA (ncRNA) in prostate cancer biology. ncRNA consists of several different classes including small non-coding RNA (sncRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). These families are under active investigation, given their essential roles in cancer initiation, development and progression. This review focuses on the evidence for the role of RNAs in prostate cancer, and their use as diagnostic and prognostic markers, and targets for treatment in this disease.
Collapse
Affiliation(s)
- Marvin C J Lim
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
- Department of Medical Oncology, Tallaght University Hospital, Dublin D24 NR0A, Ireland.
| | - Anne-Marie Baird
- Cancer and Ageing Research Programme, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Department of Clinical Medicine, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland.
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin 08 W9RT, Ireland.
| | - John Aird
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
| | - John Greene
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
| | - Dhruv Kapoor
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
| | - Steven G Gray
- Department of Clinical Medicine, Trinity College Dublin, College Green, Dublin D02 PN40, Ireland.
- Thoracic Oncology Research Group, Labmed Directorate, St. James's Hospital, Dublin 08 W9RT, Ireland.
- School of Biological Sciences, Dublin Institute of Technology, Dublin D08 NF82, Ireland.
| | - Ray McDermott
- Department of Medical Oncology, Tallaght University Hospital, Dublin D24 NR0A, Ireland.
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin D04 YN26, Ireland.
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin D08 W9RT, Ireland.
- Department of Histopathology, St. James's Hospital, P.O. Box 580, James's Street, Dublin D08 X4RX, Ireland.
| |
Collapse
|
35
|
Yu X, Pang L, Yang T, Liu P. lncRNA LINC01296 regulates the proliferation, metastasis and cell cycle of osteosarcoma through cyclin D1. Oncol Rep 2018; 40:2507-2514. [PMID: 30226542 PMCID: PMC6151898 DOI: 10.3892/or.2018.6674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has indicated that aberrant expression of long non-coding RNAs (lncRNAs) is an important oncogenic factor. The aim of the present study was to investigate the role of LINC01296, an lncRNA that exerts a tumor-promoting function in many cancers, in the regulation of proliferation, metastasis and the cell cycle of osteosarcoma. The expression of LINC01296 in osteosarcoma tissues and adjacent healthy tissues of 30 patients was analyzed by quantitative real-time PCR (qRT-PCR). The relationship between LINC01296 expression and the survival of patients with osteosarcoma was also explored. The expression levels of LINC01296 in osteosarcoma cells and normal cells were compared. LINC01296 knockdown and overexpression were performed in MG63 and HOS8603 osteosarcoma cells by transfecting LINC01296 shRNA and an expression plasmid respectively, followed by investigation of the changes on cell proliferation, migration, apoptosis and cell cycle arrest. Western blotting was used to analyze the changes of cell cycle regulators. Cyclin D1 knockdown and overexpression were carried out to verify the interaction between LINC01296 and cyclin D1. LINC01296 overexpression was demonstrated as a biomarker of osteosarcoma, which was closely correlated with the poor survival of patients with osteosarcoma. A high expression of LINC01296 was observed in osteosarcoma cells, which was closely associated with enhanced proliferation, invasion, and migration of osteosarcoma cells. Cyclin D1 expression was positively correlated with the expression of LINC01296 in osteosarcoma cells. Cyclin D1 knockdown or overexpression played a deterministic role in mediating the effect of LINC01296 on osteosarcoma cells. LINC01296 is an oncogenic lncRNA in osteosarcoma. The proliferation, invasion and migration of osteosarcoma cells could be effectively retarded by inhibition of LINC01296. The cancer-promoting effect of LINC01296 on osteosarcoma was determined by cyclin D1.
Collapse
Affiliation(s)
- Xin Yu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Teng Yang
- Department of Orthopaedics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengcheng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
36
|
Xu T, Lin CM, Cheng SQ, Min J, Li L, Meng XM, Huang C, Zhang L, Deng ZY, Li J. Pathological bases and clinical impact of long noncoding RNAs in prostate cancer: a new budding star. Mol Cancer 2018; 17:103. [PMID: 30037351 PMCID: PMC6056913 DOI: 10.1186/s12943-018-0852-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides. Recent advances in the non-protein coding part of human genome analysis have discovered extensive transcription of large RNA transcripts that lack coding protein function, termed non-coding RNA (ncRNA). It is becoming evident that lncRNAs may be an important class of pervasive genes involved in carcinogenesis and metastasis. However, the biological and molecular mechanisms of lncRNAs in diverse diseases are not yet fully understood. Thus, it is anticipated that more efforts should be made to clarify the lncRNA world. Moreover, accumulating evidence has demonstrated that many lncRNAs are dysregulated in prostate cancer (PC) and closely related to tumorigenesis, metastasis, and prognosis or diagnosis. In this review, we will briefly outline the regulation and functional role of lncRNAs in PC. Finally, we discussed the potential of lncRNAs as prospective novel targets in PC treatment and biomarkers for PC diagnosis.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Chang-Ming Lin
- Department of Urology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shu-Qi Cheng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Jie Min
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Li Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.,Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Zi-Yu Deng
- Department of Scientific, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China. .,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
37
|
Peng J. si-TP73-AS1 suppressed proliferation and increased the chemotherapeutic response of GC cells to cisplatin. Oncol Lett 2018; 16:3706-3714. [PMID: 30127981 PMCID: PMC6096144 DOI: 10.3892/ol.2018.9107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 04/16/2018] [Indexed: 12/20/2022] Open
Abstract
Previous studies have revealed that long noncoding RNAs (lncRNAs) function as crucial regulators in various biological processes, including tumorigenesis. Although the expression of lncRNA TP73-antisense RNA1 (AS1) has been identified in hepatocellular carcinoma and glioma, the biological function of TP73-AS1 in gastric cancer (GC) remains unclear. Thus, the present study employed a comprehensive analysis on the function of lncRNA TP73-AS1 in GC. The aim of the present study was to determine the clinical significance and biological function of TP73-AS1 in human GC tissues and cells. Additionally, the expression of TP73-AS1 was increased in GC tissues and cell lines and increased expression level of TP73-AS1 was associated with poor prognosis in patients with GC. Functional assays revealed that silencing of TP73-AS1 may suppress cell proliferation and enhance the chemotherapeutic response of GC cells to cisplatin through targeting the high mobility group 1/receptor for advanced glycation endproducts signaling pathway. Collectively, the results of the present study demonstrated that TP73-AS1 may be a novel lncRNA for the clinical prognosis of GC and a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Jianjun Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
38
|
Jiang M, Xiao Y, Liu D, Luo N, Gao Q, Guan Y. Overexpression of long noncoding RNA LINC01296 indicates an unfavorable prognosis and promotes tumorigenesis in breast cancer. Gene 2018; 675:217-224. [PMID: 29981416 DOI: 10.1016/j.gene.2018.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/20/2018] [Accepted: 07/01/2018] [Indexed: 11/16/2022]
Abstract
Breast cancer (BC) is one of the most common malignancies in female worldwide. Long non-coding RNAs (lncRNAs) play imperative roles in cancer cell initiation and progression. Recently, aberrantly expressed LINC01296 was observed in several malignancies. To the best of our knowledge, its clinical significance and exact effects on BC is still unclear. In this work, the clinical value of LINC01296 was evaluated in patients with BC. Additionally, cell proliferation, apoptosis, migration and invasion capacities were detected after silencing of LINC01296. Furthermore, the xenograft experiment was used to confirm the in vitro results. As a result, LINC01296 is up-regulated in both BC tissue samples and cells. Up-regulated LINC01296 is correlated with larger tumor size, positive lymph node metastasis, and advanced TNM stage of patients with BC. Additionally, Cox regression analysis confirmed LINC01296 as an independent prognostic indicator for patients with BC. For the part of functional assays, silencing of LINC01296 inhibited BC cell growth in vitro and in vivo. Also, cell apoptosis was enhanced after LINC01296 silenced. Moreover, cell migration and invasion potential were both abrogated in the si-LINC01296 groups. Collectively, LINC01296 may function as a potential prognostic predictor and therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Min Jiang
- Department of Ultrasound, Third Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province 161000, China.
| | - Yu Xiao
- Department of Physiology, Qiqihar Medical University, Heilongjiang Province 161000, China
| | - Deshui Liu
- Department of Oncomolecularbiology, Medical Research Institute of Qiqihar Medical University, Heilongjiang Province 161000, China
| | - Na Luo
- Department of Ultrasound, Third Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province 161000, China
| | - Qi Gao
- Department of Ultrasound, Third Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province 161000, China
| | - Yueyao Guan
- Department of Ultrasound, Third Affiliated Hospital of Qiqihar Medical University, Heilongjiang Province 161000, China
| |
Collapse
|
39
|
Arriaga-Canon C, De La Rosa-Velázquez IA, González-Barrios R, Montiel-Manríquez R, Oliva-Rico D, Jiménez-Trejo F, Cortés-González C, Herrera LA. The use of long non-coding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer. Oncotarget 2018; 9:20872-20890. [PMID: 29755696 PMCID: PMC5945524 DOI: 10.18632/oncotarget.25038] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is the most common cancer in men and the second leading cause of cancer-related deaths. The most used biomarker to detect prostate cancer is Prostate Specific Antigen (PSA), whose levels are measured in serum. However, it has been recently established that molecular markers of cancer should not be based solely on genes and proteins but should also reflect other genomic traits; long non-coding RNAs (lncRNAs) serve this purpose. lncRNAs are transcripts of >200 bases that do not encode proteins and that have been shown to display abnormal expression profiles in different types of cancer. Experimental studies have highlighted lncRNAs as potential biomarkers for prognoses and treatments in patients with different types of cancer, including prostate cancer, where the PCA3 lncRNA is currently used as a diagnostic tool and management strategy. With the development of genomic technologies, particularly next-generation sequencing (NGS), several other lncRNAs have been linked to prostate cancer and are currently under validation for their medical use. In this review, we will discuss different strategies for the discovery of novel lncRNAs that can be evaluated as prognostic biomarkers, the clinical impact of these lncRNAs and how lncRNAs can be used as potential therapeutic targets.
Collapse
Affiliation(s)
| | - Inti Alberto De La Rosa-Velázquez
- Universidad Nacional Autónoma de México, Laboratorio de Genómica, CIC-Red de Apoyo a la Investigación, INCMNSZ, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan C.P.14080, CDMX, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan. C.P. 14080, CDMX, Mexico
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan. C.P. 14080, CDMX, Mexico
| | - Diego Oliva-Rico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan. C.P. 14080, CDMX, Mexico
| | | | - Carlo Cortés-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan. C.P. 14080, CDMX, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan. C.P. 14080, CDMX, Mexico
| |
Collapse
|
40
|
Zhang D, Li H, Xie J, Jiang D, Cao L, Yang X, Xue P, Jiang X. Long noncoding RNA LINC01296 promotes tumor growth and progression by sponging miR-5095 in human cholangiocarcinoma. Int J Oncol 2018; 52:1777-1786. [PMID: 29620172 PMCID: PMC5919714 DOI: 10.3892/ijo.2018.4362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to elucidate whether, and how, long intergenic non-protein coding RNA 1296 (LINC01296) is involved in the modulation of human cholangiocarcinoma (CCA) development and progression. Microarray data analysis and reverse transcription-quantitative polymerase chain reaction analysis demonstrated that LINC01296 was significantly upregulated in human CCA compared with nontumor tissues. Furthermore, the expression of LINC01296 in human CCA was positively associated with tumor severity and clinical stage. Knockdown of LINC01296 dramatically suppressed the viability, migration and invasion of RBE and CCLP1 cells, and promoted cell apoptosis in vitro. Furthermore, LINC01296 knockdown inhibited tumor growth in a xenograft model. Mechanistically, LINC01296 was demonstrated to sponge microRNA-5095 (miR-5095), which targets MYCN proto-oncogene bHLH transcription factor (MYCN) mRNA in human CCA. By inhibition of miR-5095, LINC01296 overexpression upregulated the expression of MYCN and promoted cell viability, migration and invasion in CCA cells. The results reveal that the axis of LINC01296/miR-5095/MYCN may be a mechanism to regulate CCA development and progression.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Haiyan Li
- Department of Breast and Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Juping Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Decan Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xuewei Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
41
|
Aird J, Baird AM, Lim MC, McDermott R, Finn SP, Gray SG. Carcinogenesis in prostate cancer: The role of long non-coding RNAs. Noncoding RNA Res 2018; 3:29-38. [PMID: 30159437 PMCID: PMC6084828 DOI: 10.1016/j.ncrna.2018.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/16/2018] [Indexed: 12/28/2022] Open
Abstract
LncRNAs appear to play a considerable role in tumourigenesis through regulating key processes in cancer cells such as proliferative signalling, replicative immortality, invasion and metastasis, evasion of growth suppressors, induction of angiogenesis and resistance to apoptosis. LncRNAs have been reported to play a role in prostate cancer, particularly in regulating the androgen receptor signalling pathway. In this review article, we summarise the role of 34 lncRNAs in prostate cancer with a particular focus on their role in the androgen receptor signalling pathway and the epithelial to mesenchymal transition pathway.
Collapse
Affiliation(s)
- John Aird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Marvin C.J. Lim
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
- Department of Medical Oncology, Tallaght Hospital, Dublin, Ireland
| | - Ray McDermott
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
- Department of Medical Oncology, Tallaght Hospital, Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Ireland
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Steven G. Gray
- Department of Clinical Medicine, Trinity College Dublin, Dublin, Ireland
- HOPE Directorate, St. James's Hospital, Dublin, Ireland
- Labmed Directorate, St. James's Hospital, Dublin, Ireland
- School of Biological Sciences, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|