1
|
Pantazaka E, Alkahtani S, Alarifi S, Alkahtane AA, Stournaras C, Kallergi G. Role of KDM2B epigenetic factor in regulating calcium signaling in prostate cancer cells. Saudi Pharm J 2024; 32:102109. [PMID: 38817821 PMCID: PMC11135025 DOI: 10.1016/j.jsps.2024.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
KDM2B, a histone lysine demethylase, is expressed in a plethora of cancers. Earlier studies from our group, have showcased that overexpression of KDM2B in the human prostate cancer cell line DU-145 is associated with cell adhesion, actin reorganization, and improved cancer cell migration. In addition, we have previously examined changes of cytosolic Ca2+, regulated by the pore-forming proteins ORAI and the Ca2+ sensing stromal interaction molecules (STIM), via store-operated Ca2+ entry (SOCE) in wild-type DU-145. This study sought to evaluate the impact of KDM2B overexpression on the expression of key molecules (SGK1, Nhe1, Orai1, Stim1) and SOCE. Furthermore, this is the first study to evaluate KDM2B expression in circulating tumor cells (CTCs) from patients with prostate cancer. mRNA levels for SGK1, Nhe1, Orai1, and Stim1 were quantified by RT-PCR. Calcium signals were measured in KDM2B-overexpressing DU-145 cells, loaded with Fura-2. Blood samples from 22 prostate cancer cases were scrutinized for KDM2B expression using immunofluorescence staining and the VyCAP system. KDM2B overexpression in DU-145 cells increased Orai1, Stim1, and Nhe1 mRNA levels and significantly decreased Ca2+ release. KDM2B expression was examined in 22 prostate cancer patients. CTCs were identified in 45 % of these patients. 80 % of the cytokeratin (CK)-positive patients and 63 % of the total examined CTCs exhibited the (CK + KDM2B + CD45-) phenotype. To conclude, this study is the first to report increased expression of KDM2B in CTCs from patients with prostate cancer, bridging in vitro and preclinical assessments on the potentially crucial role of KDM2B on migration, invasiveness, and ultimately metastasis in prostate cancer.
Collapse
Affiliation(s)
- Evangelia Pantazaka
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Christos Stournaras
- Department of Biochemistry, Medical School, University of Crete, Heraklion 71003, Greece
| | - Galatea Kallergi
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Mo S, Liu T, Zhou H, Huang J, Zhao L, Lu F, Kuang Y. ATP6V1B1 regulates ovarian cancer progression and cisplatin sensitivity through the mTOR/autophagy pathway. Mol Cell Biochem 2024:10.1007/s11010-024-05025-w. [PMID: 38735913 DOI: 10.1007/s11010-024-05025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Early detection and effective chemotherapy for ovarian cancer, a serious gynecological malignancy, require further progress. This study aimed to investigate the molecular mechanism of ATPase H+-Transporting V1 Subunit B1 (ATP6V1B1) in ovarian cancer development and chemoresistance. Our data show that ATP6V1B1 is upregulated in ovarian cancer and correlated with decreased progression-free survival. Gain- and loss-of-function experiments demonstrated that ATP6V1B1 promotes the proliferation, migration, and invasion of ovarian cancer cells in vitro, while ATP6V1B1 knockout inhibits tumor growth in vivo. In addition, knocking down ATP6V1B1 increases the sensitivity of ovarian cancer cells to cisplatin. Mechanistic studies showed that ATP6V1B1 regulates the activation of the mTOR/autophagy pathway. Overall, our study confirmed the oncogenic role of ATP6V1B1 in ovarian cancer and revealed that ATP6V1B1 promotes ovarian cancer progression via the mTOR/autophagy axis.
Collapse
Affiliation(s)
- Shien Mo
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Tingji Liu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqin Zhou
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China
| | - Junning Huang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Zhao
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fangfang Lu
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Kuang
- Department of Gynecology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Gaungxi Medical University, Ministry of Education, Nanning, Guangxi, China.
- Guangxi Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Chakraborty S, Anand S, Coe S, Reh B, Bhandari RK. The PCOS-NAFLD Multidisease Phenotype Occurred in Medaka Fish Four Generations after the Removal of Bisphenol A Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12602-12619. [PMID: 37581432 PMCID: PMC10469501 DOI: 10.1021/acs.est.3c01922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
As a heterogeneous reproductive disorder, polycystic ovary syndrome (PCOS) can be caused by genetic, diet, and environmental factors. Bisphenol A (BPA) can induce PCOS and nonalcoholic fatty liver disease (NAFLD) due to direct exposure; however, whether these phenotypes persist in future unexposed generations is not currently understood. In a previous study, we observed that transgenerational NAFLD persisted in female medaka for five generations (F4) after exposure to an environmentally relevant concentration (10 μg/L) of BPA. Here, we demonstrate PCOS in the same F4 generation female medaka that developed NAFLD. The ovaries contained immature follicles, restricted follicular progression, and degenerated follicles, which are characteristics of PCOS. Untargeted metabolomic analysis revealed 17 biomarkers in the ovary of BPA lineage fish, whereas transcriptomic analysis revealed 292 genes abnormally expressed, which were similar to human patients with PCOS. Metabolomic-transcriptomic joint pathway analysis revealed activation of the cancerous pathway, arginine-proline metabolism, insulin signaling, AMPK, and HOTAIR regulatory pathways, as well as upstream regulators esr1 and tgf signaling in the ovary. The present results suggest that ancestral BPA exposure can lead to PCOS phenotypes in the subsequent unexposed generations and warrant further investigations into potential health risks in future generations caused by initial exposure to EDCs.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Santosh Anand
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Seraiah Coe
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Beh Reh
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| | - Ramji Kumar Bhandari
- Department of Biology, University of North Carolina at Greensboro, Greensboro 27412 North Carolina, United
States
| |
Collapse
|
4
|
Liu R, Wu J, Guo H, Yao W, Li S, Lu Y, Jia Y, Liang X, Tang J, Zhang H. Post-translational modifications of histones: Mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e292. [PMID: 37220590 PMCID: PMC10200003 DOI: 10.1002/mco2.292] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Histones are DNA-binding basic proteins found in chromosomes. After the histone translation, its amino tail undergoes various modifications, such as methylation, acetylation, phosphorylation, ubiquitination, malonylation, propionylation, butyrylation, crotonylation, and lactylation, which together constitute the "histone code." The relationship between their combination and biological function can be used as an important epigenetic marker. Methylation and demethylation of the same histone residue, acetylation and deacetylation, phosphorylation and dephosphorylation, and even methylation and acetylation between different histone residues cooperate or antagonize with each other, forming a complex network. Histone-modifying enzymes, which cause numerous histone codes, have become a hot topic in the research on cancer therapeutic targets. Therefore, a thorough understanding of the role of histone post-translational modifications (PTMs) in cell life activities is very important for preventing and treating human diseases. In this review, several most thoroughly studied and newly discovered histone PTMs are introduced. Furthermore, we focus on the histone-modifying enzymes with carcinogenic potential, their abnormal modification sites in various tumors, and multiple essential molecular regulation mechanism. Finally, we summarize the missing areas of the current research and point out the direction of future research. We hope to provide a comprehensive understanding and promote further research in this field.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jiajun Wu
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Haiwei Guo
- Otolaryngology & Head and Neck CenterCancer CenterDepartment of Head and Neck SurgeryZhejiang Provincial People's HospitalAffiliated People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Weiping Yao
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Shuang Li
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentJinzhou Medical UniversityJinzhouLiaoningChina
| | - Yanwei Lu
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Yongshi Jia
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiaodong Liang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Graduate DepartmentBengbu Medical College, BengbuAnhuiChina
| | - Jianming Tang
- Department of Radiation OncologyThe First Hospital of Lanzhou UniversityLanzhou UniversityLanzhouGansuChina
| | - Haibo Zhang
- Cancer CenterDepartment of Radiation OncologyZhejiang Provincial People's HospitalAffiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
5
|
Mao X, Li Z, Gu S, Song W, Zhang M, Tan X, Mao Z. MicroRNA-211-5p in extracellular vesicles derived from BMSCs facilitates the repair of rat frozen shoulder via regulating KDM2B/LACC1 axis. Tissue Cell 2023; 81:102006. [PMID: 36610229 DOI: 10.1016/j.tice.2022.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aims to explore the mechanism of miR-211-5p in extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) in improving frozen shoulder (FS) in rat models. METHODS Rat BMSCs and EVs derived from rat BMSCs were isolated, identified, and then injected into rats to assess the expression of TGF-β, MMP1, MMP3, MMP12, GAP43, and PGP9.5 in shoulder capsule tissues. The range of motion of bilateral glenohumeral joints was assessed and pathological changes of shoulder capsule tissues were observed after hematoxylin-eosin staining. The binding sites of miR-211-5p to KDM2B and LACC1 to H3K4me3 were measured. FS rat models with LACC1 highly expressed were established to assess the motion of bilateral glenohumeral joints and expression of arthritis related factors in rats. RESULTS EVs were successfully extracted from BMSCs. Injection of BMSCs-EVs could improve the activity of bilateral glenohumeral joints and the pathological condition of joint capsule in rats. Elevated expression of miR-211-5p was found in rats injected with BMSCs-EVs. Dual luciferase assay showed that miR-211-5p had a binding site with KDM2B. ChIP, qRT-PCR, and western blot experiments showed BMSCs-EVs injection resulted in elevated enrichment of LACC1 promoter in shoulder capsule tissues of FS rats, and decreased mRNA and protein expression of KDM2B and increased H3K4me3 methylation. Overexpression of LACC1 could also improve the pathological condition of joint capsule tissue. CONCLUSION miR-211-5p in EVs derived from BMSCs increased H3K4me3 methylation in shoulder capsule tissue of rats by binding KDM2B, resulting in up-regulated transcription level of LACC1 and improving FS. AVAILABILITY OF DATA AND MATERIALS The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Xiaodong Mao
- Department of Orthopedics & Traumatology, Department of Joint Surgery, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410008, PR China
| | - Zhi Li
- Department of Orthopedics & Traumatology, Department of Joint Surgery, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410008, PR China
| | - Shaofang Gu
- Department of Orthopedics & Traumatology, Department of Joint Surgery, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410008, PR China
| | - Wei Song
- Department of Orthopedics & Traumatology, Department of Joint Surgery, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410008, PR China
| | - Mimi Zhang
- Department of Orthopedics & Traumatology, Department of Joint Surgery, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410008, PR China
| | - Xiao Tan
- Department of Orthopedics & Traumatology, Department of Joint Surgery, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410008, PR China
| | - Ziqing Mao
- Department of Orthopedics & Traumatology, Department of Joint Surgery, Changsha Hospital of Traditional Chinese Medicine, Changsha Eighth Hospital, Changsha, Hunan 410008, PR China.
| |
Collapse
|
6
|
Zhang Q, Chen X, Cao J, Yang W, Wan G, Feng Q, Zhou S, Yang H, Wang N, Liu Z, Xiao H, Zhu Y, Yu L. Discovery of a Novel Covalent EZH2 Inhibitor Based on Tazemetostat Scaffold for the Treatment of Ovarian Cancer. J Med Chem 2023; 66:1725-1741. [PMID: 36692394 DOI: 10.1021/acs.jmedchem.2c01370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enhancer of zeste homologue 2 (EZH2) is the enzymatic catalytic subunit of polycomb repressive complex 2 (PRC2), which plays an important role in post-translational modifications of histones. In this study, we designed and synthesized a new series EZH2 covalent inhibitors that have rarely been reported. Biochemical studies and mass spectrometry provide information that SKLB-03220 could covalently bind to the S-adenosylmethionine (SAM) pocket of EZH2. Besides, SKLB-03220 was highly potent for EZH2MUT, while exhibiting weak activities against other tested histone methyltransferases (HMTs) and kinases. Moreover, SKLB-03220 displayed noteworthy potency against ovarian cancer cell lines and continuously abolished H3K27me3 after washing out. Furthermore, oral administration of SKLB-03220 significantly inhibited tumor growth in PA-1 xenograft model without obvious adverse effects. Taken together, SKLB-03220 is a potent, selective EZH2 covalent inhibitor with noteworthy anticancer efficacy both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiangsheng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| | - Xinyi Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| | - Jiaying Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| | - Wan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| | - Qiang Feng
- College of Chemistry and Life Science, Chengdu Normal University, Chengdu 611130, P. R. China
| | - Shuyan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| | - Hongling Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest JiaoTong University, Chengdu 611756, Sichuan, P. R. China
| | - Zhihao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
- Laboratory of Emergency Medicine, Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, P. R. China
| | - Yongxia Zhu
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, P. R. China
| | - Luoting Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 17#3rd Section, Ren Min South Road, Chengdu 610041, P. R. China
| |
Collapse
|
7
|
Diao W, Zheng J, Li Y, Wang J, Xu S. Targeting histone demethylases as a potential cancer therapy (Review). Int J Oncol 2022; 61:103. [PMID: 35801593 DOI: 10.3892/ijo.2022.5393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/06/2022] Open
Abstract
Post‑translational modifications of histones by histone demethylases have an important role in the regulation of gene transcription and are implicated in cancers. Recently, the family of lysine (K)‑specific demethylase (KDM) proteins, referring to histone demethylases that dynamically regulate histone methylation, were indicated to be involved in various pathways related to cancer development. To date, numerous studies have been conducted to explore the effects of KDMs on cancer growth, metastasis and drug resistance, and a majority of KDMs have been indicated to be oncogenes in both leukemia and solid tumors. In addition, certain KDM inhibitors have been developed and have become the subject of clinical trials to explore their safety and efficacy in cancer therapy. However, most of them focus on hematopoietic malignancy. This review summarizes the effects of KDMs on tumor growth, drug resistance and the current status of KDM inhibitors in clinical trials.
Collapse
Affiliation(s)
- Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Jiabin Zheng
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yong Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Songhui Xu
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
8
|
KDM2B mediates the Wnt/β-catenin pathway through transcriptional activation of PKMYT1 via microRNA-let-7b-5p/EZH2 to affect the development of non-small cell lung cancer. Exp Cell Res 2022; 417:113208. [DOI: 10.1016/j.yexcr.2022.113208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022]
|
9
|
Taylor-Papadimitriou J, Burchell JM. Histone Methylases and Demethylases Regulating Antagonistic Methyl Marks: Changes Occurring in Cancer. Cells 2022; 11:1113. [PMID: 35406676 PMCID: PMC8997813 DOI: 10.3390/cells11071113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation of gene expression is crucial to the determination of cell fate in development and differentiation, and the Polycomb (PcG) and Trithorax (TrxG) groups of proteins, acting antagonistically as complexes, play a major role in this regulation. Although originally identified in Drosophila, these complexes are conserved in evolution and the components are well defined in mammals. Each complex contains a protein with methylase activity (KMT), which can add methyl groups to a specific lysine in histone tails, histone 3 lysine 27 (H3K27), by PcG complexes, and H3K4 and H3K36 by TrxG complexes, creating transcriptionally repressive or active marks, respectively. Histone demethylases (KDMs), identified later, added a new dimension to histone methylation, and mutations or changes in levels of expression are seen in both methylases and demethylases and in components of the PcG and TrX complexes across a range of cancers. In this review, we focus on both methylases and demethylases governing the methylation state of the suppressive and active marks and consider their action and interaction in normal tissues and in cancer. A picture is emerging which indicates that the changes which occur in cancer during methylation of histone lysines can lead to repression of genes, including tumour suppressor genes, or to the activation of oncogenes. Methylases or demethylases, which are themselves tumour suppressors, are highly mutated. Novel targets for cancer therapy have been identified and a methylase (KMT6A/EZH2), which produces the repressive H3K27me3 mark, and a demethylase (KDM1A/LSD1), which demethylates the active H3K4me2 mark, are now under clinical evaluation.
Collapse
|
10
|
Dysregulated Expression of Long Non-Coding RNA MINCR and EZH2 in Colorectal Cancer. IRANIAN BIOMEDICAL JOURNAL 2022; 26:64-9. [PMID: 34923811 PMCID: PMC8784897 DOI: 10.52547/ibj.26.1.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND As critical regulators, lncRNAs have attracted attention from researchers for diagnostic, prognostic, and therapeutic purposes in human carcinogenesis via interfering with mRNAs such as EZH2. Nevertheless, the potent roles and molecular mechanisms of these RNAs in CRC are not clearly known. METHODS In this study, the tissue expressions of lncRNA MINCR and EZH2 mRNA between colorectal tumors and polyps were compared with the adjacent normal tissues collected from 114 Iranian patients, using real-time PCR method. Furthermore, the correlation of the expression levels of MINCR and EZH2 with other clinical parameters was evaluated. RESULTS The significant overexpression of MINCR and EZH2 were observed in the CRC tissues compared to control tissues (p < 0.0001). This observation confirmed the association of these expression enhancements with the pathological stage of CRC patients. CONCLUSION Our findings revealed that the expression of MINCR significantly alters during CRC development, and it can be identified as a potential biomarker for the detection of CRC.
Collapse
|
11
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Gulay KCM, Aoshima K, Kim S, Kitaguchi R, Kobayashi A, Kimura T. The expression of histone lysine demethylase 2B in canine hemangiosarcoma is associated with disease progression. Vet Comp Oncol 2021; 20:529-534. [DOI: 10.1111/vco.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Kevin Christian M. Gulay
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine Hokkaido University Sapporo Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine Hokkaido University Sapporo Japan
| | - Sangho Kim
- Laboratory of Veterinary Surgery, Department of Clinical Sciences, Faculty of Veterinary Medicine Hokkaido University Sapporo Japan
| | - Ryusei Kitaguchi
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine Hokkaido University Sapporo Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine Hokkaido University Sapporo Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine Hokkaido University Sapporo Japan
| |
Collapse
|
13
|
Yang Y, Zhao B, Lv L, Yang Y, Li S, Wu H. FBXL10 promotes EMT and metastasis of breast cancer cells via regulating the acetylation and transcriptional activity of SNAI1. Cell Death Discov 2021; 7:328. [PMID: 34718323 PMCID: PMC8557203 DOI: 10.1038/s41420-021-00722-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
F-box and leucine-rich repeat protein 10 (FBXL10) has been reported to play a regulatory role in the initiation and development of breast cancer. Bioinformatics analyses revealed that FBXL10 may involve in the process of cytoskeleton organization. This research aimed to investigate the function of FBXL10 in epithelial-mesenchymal transition (EMT) and metastasis of breast cancer, and tried to reveal the molecular mechanism involved in this issue. Functional experiments in vitro revealed that FBXL10 promoted the migration and invasion of breast cancer cells through inhibiting E-cadherin expression and inducing EMT. Mechanical studies revealed that FBXL10 could specifically interact with SNAI1, but not Slug or ZEB1. And it promoted the transcriptional repression activity of SNAI1 on CDH1 in breast cancer cells. Furthermore, FBXL10 had a positive role for the deacetylation of SNAI1 by facilitating the interaction between SNAI1 and HDAC1, a dominating deacetylase of SNAI1. And the deacetylated SNAI1 showed a more suppressive ability to inhibit the transcription of E-cadherin. Moreover, mouse models were also conducted to confirm the effect of FBXL10 on the lung metastasis of breast cancer in vivo. Totally, our data revealed that FBXL10 served as a pro-metastatic factor in breast cancer via repressing the expression of E-cadherin and inducing EMT. It may provide a novel regulatory axis in the EMT of breast cancer.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, Liaoning Province, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian, Liaoning Province, China.
| |
Collapse
|
14
|
Li M, Shi M, Xu Y, Qiu J, Lv Q. Histone Methyltransferase KMT2D Regulates H3K4 Methylation and is Involved in the Pathogenesis of Ovarian Cancer. Cell Transplant 2021; 30:9636897211027521. [PMID: 34705580 PMCID: PMC8554562 DOI: 10.1177/09636897211027521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To investigate the function of histone-lysine N-methyltransferase 2D (KMT2D) on the methylation of H3 lysine 4 (H3K4) in the progression of Ovarian cancer (OV). KMT2D, ESR1 and H3K4me expressions in surgical resected tumors and tumor adjacent tissues of OV from 198 patients were determined using immunohistochemistry (IHC). Human OV cell lines including SKOV3, HO-8910 cells and normal ovarian epithelial cell line IOSE80 were employed for in vitro experiment, and BALB/C female nude mice were used for in vivo study. qRT-PCR and Western blotting were implemented for measuring the KMT2D, ESR1, PTGS2, STAT3, VEGFR2, H3K4me and ELF3 levels. Chromatin immunoprecipitation (ChIP) analysis was used for studying the binding between ESR1 and H3K4me. Edu staining assay was executed to determine cell viability, and colony formation and cell invasion assay. The immunofluorescence method was utilized for the visualization of protein expression and distribution in cells. In this study, KMT2D, ESR1 and H3K4me were found upregulated in OV progression. Mutated H3K4me could inhibit the proliferation, colony formation and invasion ability of OV cells. Mutated H3K4me could also hinder the ESR1 in SKOV3 expressions and HO-8910 cells, which would further mediate PTGS2/STAT3/VEGF pathway. In vivo studies also demonstrated that mutated H3K4me inhibited OV progression via targeting ESR1. All the ChIP-PCR analysis indicated the moderator effect of H3K4me on ESR1. Our findings indicated that ESR1 played an important role in the OV progression. Besides, H3K4me could promote cell proliferation and inhibit apoptosis of OV cells. Meanwhile, it could also targets the ESR1 production to enhance the migration and invasion of OV cells, which was through the activation of ESR1-ELF3-PTGS2-STAT3-VEGF cascade signaling pathway.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
- Co-first author
| | - Mengdie Shi
- Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
- Co-first author
| | - Ying Xu
- Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
| | - Jianping Qiu
- Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, Suzhou, China
- Jianping Qiu, Department of obstetrics and gynecology, the Affiliated Suzhou Municipal Hospital of Nanjing Medical University, No.242 Guangji Road, Suzhou, 215008, China.
| | - Qing Lv
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
- Qing Lv, Department of Breast Surgery, Affiliated Hospital of Jiangnan University, No.1000 Hefeng Road, Wuxi, 214000, China.
| |
Collapse
|
15
|
Liu XY, Guo CH, Xi ZY, Xu XQ, Zhao QY, Li LS, Wang Y. Histone methylation in pancreatic cancer and its clinical implications. World J Gastroenterol 2021; 27:6004-6024. [PMID: 34629816 PMCID: PMC8476335 DOI: 10.3748/wjg.v27.i36.6004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is an aggressive human cancer. Appropriate methods for the diagnosis and treatment of PC have not been found at the genetic level, thus making epigenetics a promising research path in studies of PC. Histone methylation is one of the most complicated types of epigenetic modifications and has proved crucial in the development of PC. Histone methylation is a reversible process regulated by readers, writers, and erasers. Some writers and erasers can be recognized as potential biomarkers and candidate therapeutic targets in PC because of their unusual expression in PC cells compared with normal pancreatic cells. Based on the impact that writers have on the development of PC, some inhibitors of writers have been developed. However, few inhibitors of erasers have been developed and put to clinical use. Meanwhile, there is not enough research on the reader domains. Therefore, the study of erasers and readers is still a promising area. This review focuses on the regulatory mechanism of histone methylation, and the diagnosis and chemotherapy of PC based on it. The future of epigenetic modification in PC research is also discussed.
Collapse
Affiliation(s)
- Xing-Yu Liu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Chuan-Hao Guo
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhi-Yuan Xi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xin-Qi Xu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Qing-Yang Zhao
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Ying Wang
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
16
|
Lang X, Chen Z, Yang X, Yan Q, Xu M, Liu W, He Q, Zhang Y, Cheng W, Zhao W. Scutellarein induces apoptosis and inhibits proliferation, migration, and invasion in ovarian cancer via inhibition of EZH2/FOXO1 signaling. J Biochem Mol Toxicol 2021; 35:e22870. [PMID: 34350670 DOI: 10.1002/jbt.22870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023]
Abstract
Scutellarein, a flavone found in the perennial herb Scutellaria baicalensis, has antitumorigenic activity in multiple human cancers. However, whether scutellarein can attenuate ovarian cancer (OC) is unclear. This study investigated the effects of scutellarein in OC. In vitro cell viability was assessed using MTT assay whereas proliferation was assessed using 5-ethynyl-2'-deoxyuridine and colony formation assays. Cell apoptosis was detected by an Annexin V-fluorescein isothiocyanate/propidium iodide assay. Wound-healing and Transwell assays were used to determine cell migration and invasion. The differential expression of enhancer of zeste homolog 2 (EZH2) and forkhead box protein O1 (FOXO1) was measured by Quantitative real-time PCR and western blot analysis. We found that scutellarein inhibited viability, migration, invasion of A2780 and SKOV-3 cells, and reduced the expression of EZH2 in OC cells. In addition, FOXO1 was downregulated in OC tissues and cells and negatively regulated by EZH2. Also, scutellarein inhibited tumor growth and metastasis in vivo. In conclusion, scutellarein alleviates OC by the regulation of EZH2/FOXO1 signaling.
Collapse
Affiliation(s)
- Xiao Lang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Zheng Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xingyu Yang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Qi Yan
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Manfei Xu
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Wei Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Qin He
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weiwei Cheng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Wenxia Zhao
- Department of Obstetrics and Gynecology, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Qi J, Zhou L, Li D, Yang J, Wang H, Cao H, Huang Y, Zhang Z, Chang L, Zhu C, Zhan J, Yuan Y. Oncogenic role of ALX3 in cervical cancer cells through KDM2B-mediated histone demethylation of CDC25A. BMC Cancer 2021; 21:819. [PMID: 34266408 PMCID: PMC8284019 DOI: 10.1186/s12885-021-08552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Cell division cycle 25A (CDC25A) is a well-recognized regulator of cell cycle progression and is involved in cancer development. This work focused on the function of CDC25A in cervical cancer cell growth and the molecules involved. Methods A GEO dataset GSE63514 comprising data of cervical squamous cell carcinoma (CSCC) tissues was used to screen the aberrantly expressed genes in cervical cancer. The CDC25A expression in cancer and normal tissues was predicted in the GEPIA database and that in CSCC and normal cells was determined by RT-qPCR and western blot assays. Downregulation of CDC25A was introduced in CSCC cells to explore its function in cell growth and the cell cycle progression. The potential regulators of CDC25A activity and the possible involved signaling were explored. Results CDC25A was predicted to be overexpressed in CSCC, and high expression of CDC25A was observed in CSCC cells. Downregulation of CDC25A in ME180 and C33A cells reduced cell proliferation and blocked cell cycle progression, and it increased cell apoptosis. ALX3 was a positive regulator of CDC25A through transcription promotion. It recruited a histone demethylase, lysine demethylase 2B (KDM2B), to the CDC25A promoter, which enhanced CDC25A expression through demethylation of H3k4me3. Overexpression of ALX3 in cells blocked the inhibitory effects of CDC25A silencing. CDC25A was found as a positive regulator of the PI3K/Akt signaling pathway. Conclusion This study suggested that the ALX3 increased CDC25A expression through KDM2B-mediated demethylation of H3K4me3, which induced proliferation and cell cycle progression of cervical cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08552-7.
Collapse
Affiliation(s)
- Jinhong Qi
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Li Zhou
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Dongqing Li
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Jingyuan Yang
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, 130012, Jilin, People's Republic of China
| | - He Wang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Huifang Cao
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Yunlan Huang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Zhiming Zhang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Linlin Chang
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Chenhao Zhu
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Juntong Zhan
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China
| | - Yong Yuan
- Department Two of Gynecologic Oncology, Jilin Cancer Hospital, No. 1018, Huguang Road, Changchun, 130012, Jilin, People's Republic of China.
| |
Collapse
|
18
|
Punnia-Moorthy G, Hersey P, Emran AA, Tiffen J. Lysine Demethylases: Promising Drug Targets in Melanoma and Other Cancers. Front Genet 2021; 12:680633. [PMID: 34220955 PMCID: PMC8242339 DOI: 10.3389/fgene.2021.680633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been implicated in a variety of pathological processes including carcinogenesis. A major group of enzymes that influence epigenetic modifications are lysine demethylases (KDMs) also known as "erasers" which remove methyl groups on lysine (K) amino acids of histones. Numerous studies have implicated aberrant lysine demethylase activity in a variety of cancers, including melanoma. This review will focus on the structure, classification and functions of KDMs in normal biology and the current knowledge of how KDMs are deregulated in cancer pathogenesis, emphasizing our interest in melanoma. We highlight the current knowledge gaps of KDMs in melanoma pathobiology and describe opportunities to increases our understanding of their importance in this disease. We summarize the progress of several pre-clinical compounds that inhibit KDMs and represent promising candidates for further investigation in oncology.
Collapse
Affiliation(s)
- Gaya Punnia-Moorthy
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Jessamy Tiffen
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Weiss RJ, Spahn PN, Chiang AW, Liu Q, Li J, Hamill KM, Rother S, Clausen TM, Hoeksema MA, Timm BM, Godula K, Glass CK, Tor Y, Gordts PL, Lewis NE, Esko JD. Genome-wide screens uncover KDM2B as a modifier of protein binding to heparan sulfate. Nat Chem Biol 2021; 17:684-692. [PMID: 33846619 PMCID: PMC8159865 DOI: 10.1038/s41589-021-00776-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/18/2021] [Indexed: 02/01/2023]
Abstract
Heparan sulfate (HS) proteoglycans bind extracellular proteins that participate in cell signaling, attachment and endocytosis. These interactions depend on the arrangement of sulfated sugars in the HS chains generated by well-characterized biosynthetic enzymes; however, the regulation of these enzymes is largely unknown. We conducted genome-wide CRISPR-Cas9 screens with a small-molecule ligand that binds to HS. Screening of A375 melanoma cells uncovered additional genes and pathways impacting HS formation. The top hit was the epigenetic factor KDM2B, a histone demethylase. KDM2B inactivation suppressed multiple HS sulfotransferases and upregulated the sulfatase SULF1. These changes differentially affected the interaction of HS-binding proteins. KDM2B-deficient cells displayed decreased growth rates, which was rescued by SULF1 inactivation. In addition, KDM2B deficiency altered the expression of many extracellular matrix genes. Thus, KDM2B controls proliferation of A375 cells through the regulation of HS structure and serves as a master regulator of the extracellular matrix.
Collapse
Affiliation(s)
- Ryan J. Weiss
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Philipp N. Spahn
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Austin W.T. Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Qing Liu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Jing Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Kristina M. Hamill
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Sandra Rother
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Thomas M. Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Marten A. Hoeksema
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Bryce M. Timm
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Department of Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA
| | - Philip L.S.M. Gordts
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Department of Medicine, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Co-corresponding authors
| | - Jeffrey D. Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA,Co-corresponding authors
| |
Collapse
|
20
|
Yang Y, Li S, Li B, Li Y, Xia K, Aman S, Yang Y, Ahmad B, Zhao B, Wu H. FBXL10 promotes ERRα protein stability and proliferation of breast cancer cells by enhancing the mono-ubiquitylation of ERRα. Cancer Lett 2021; 502:108-119. [PMID: 33450359 DOI: 10.1016/j.canlet.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
The underlying mechanism of orphan nuclear receptor estrogen-related receptor α (ERRα) in breast cancer was investigated by identifying its interaction partners using mass spectrometry. F-box and leucine-rich repeat protein 10 (FBXL10), which modulates various physiological processes, may interact with ERRα in breast cancer. Here, we investigated the interaction between FBXL10 and ERRα, and their protein expression and correlation in breast cancer. Mechanical studies revealed that FBXL10 stabilized ERRα protein levels by reducing its poly-ubiquitylation and promoting its mono-ubiquitylation. The reporter gene assay and examination of ERRα target genes validated the increased transcriptional activity of ERRα due to its increased protein levels by FBXL10. FBXL10 also increased ERRα enrichment at the promoter region of its target genes. Functionally, FBXL10 facilitated the ERRα/peroxisome proliferator-activated receptor gamma coactivator 1 β (PGC1β)-mediated proliferation and tumorigenesis of breast cancer cells in vitro and in vivo. Our results uncovered a molecular mechanism linking the mono-ubiquitylation and protein stability of ERRα to functional interaction with FBXL10. Moreover, a novel regulatory axis of FBXL10 and ERRα regulating the proliferation and tumorigenesis of breast cancer cells was established.
Collapse
Affiliation(s)
- Yangyang Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bowen Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Kangkai Xia
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Sattout Aman
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Bashir Ahmad
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Dalian University of Technology, Dalian, Liaoning Province, China.
| |
Collapse
|
21
|
Sanches JGP, Song B, Zhang Q, Cui X, Yabasin IB, Ntim M, Li X, He J, Zhang Y, Mao J, Lu Y, Li L. The Role of KDM2B and EZH2 in Regulating the Stemness in Colorectal Cancer Through the PI3K/AKT Pathway. Front Oncol 2021; 11:637298. [PMID: 33791221 PMCID: PMC8006351 DOI: 10.3389/fonc.2021.637298] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The incidence of colorectal cancer (CRC) has been increasing worldwide in recent years. Targeting cancer stem cells (CSCs) in CRC remains a difficult challenge. KDM2B and EZH2 play important role in the maintenance of CSCs' self-renewal capacity and tumorigenic ability; however, the biological functions of those genes in CRC remain unclear. In this study, we aimed to define the contribution of the expression of KDM2B in the features of CRC and establish the relationship between KDM2B and EZH2 in colorectal CSCs. Methods: The expression of KDM2B and EZH2 in the specimens of CRC and CRC cell lines were analyzed by immunohistochemistry, Western blot, and immunofluorescence. The underlying mechanisms of altered expressions of KDM2B and EZH2 and their impact on the biologic features of CRC and stemness in CRC were investigated. Results: The KDM2B gene was highly expressed in CRC tissues, and its overexpression positively correlated with tumor stages and tumor/node/metastasis (TNM) classification. The downregulation of KDM2B retarded cell proliferation, induced DNA damage, reduced spheroid formation, and decreased CRC stem cell markers: CD44, CD133, and ALDH-1. Moreover, the downregulation of KDM2B decreased the expression of EZH2 and both regulated cell migration, invasion, and stemness in the CRC cell line. Additionally, the interaction between KDM2B and EZH2 significantly increased the components of the PI3K/AKT pathway including AKT and PI3K. The high expression of KDM2B positively correlated with EZH2 in CRC tissues. Conclusion: This study shows that the downregulation of KDM2B and EZH2 can regulate CRC cell stemness, and their interaction may serve as a novel prognostic marker and therapeutic target for patients with CRC.
Collapse
Affiliation(s)
| | - Bo Song
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Xinye Cui
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Iddrisu Baba Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Michael Ntim
- Department of Physiology, Dalian Medical University, Dalian, China
| | - Xinlong Li
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Jiabei He
- Department of Ultrasound, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yao Zhang
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Ying Lu
- Teaching Laboratory of Morphology, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Kuang Y, Xu H, Lu F, Meng J, Yi Y, Yang H, Hou H, Wei H, Su S. Inhibition of microRNA let-7b expression by KDM2B promotes cancer progression by targeting EZH2 in ovarian cancer. Cancer Sci 2021; 112:231-242. [PMID: 33091189 PMCID: PMC7780014 DOI: 10.1111/cas.14708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNA let-7b is a potent tumor suppressor and targets crucial oncogenes. Previous studies have shown that let-7b expression is suppressed in ovarian cancer; however, the regulatory mechanisms of let-7b in ovarian cancer are still not well defined. The cellular role and targets of let-7b in ovarian cancer remain elusive. In the present study, we showed that histone demethylase, KDM2B, directly suppressed let-7b expression by H3K36me2 demethylation. Moreover, let-7b inhibited EZH2 expression in ovarian cancer cells. Based on these results we know that let-7b antagonizes the enhancement of EZH2 expression caused by KDM2B overexpression, and its expression is negatively correlated with KDM2B and EZH2 expression. More importantly, proliferation, migration, and wound healing assays showed that let-7b inhibited ovarian cancer cell proliferation and migration in vitro. Additionally, let-7b overexpression neutralized KDM2B-promoted cell proliferation and migration. Furthermore, downregulation of let-7b increased the xenografted tumor volumes in nude mice that were transplanted with KDM2B-silenced cells. EZH2 silencing reversed the tumor growth enhancement mediated by inhibition of let-7b. Last, we show that let-7b expression is suppressed in ovarian carcinomas and its expression is negatively associated with the clinicopathological features of ovarian cancer, including histological type, histological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, and lymph node metastatic status. In conclusion, in ovarian cancer, let-7b expression is epigenetically suppressed by high expression of KDM2B. The loss of let-7b upregulates the expression of EZH2, which promotes ovarian cancer growth in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Kuang
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hong Xu
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Fangfang Lu
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jiahua Meng
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yeye Yi
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Huilan Yang
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hairui Hou
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Hao Wei
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Shanheng Su
- The First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
23
|
Huo X, Sun H, Qian Q, Ma X, Peng P, Yu M, Zhang Y, Yang J, Cao D, Gui T, Shen K. CYP27B1 Downregulation: A New Molecular Mechanism Regulating EZH2 in Ovarian Cancer Tumorigenicity. Front Cell Dev Biol 2020; 8:561804. [PMID: 33163485 PMCID: PMC7591459 DOI: 10.3389/fcell.2020.561804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer has the highest mortality rate among gynecologic cancers, and most patients are diagnosed in advanced stages. Enhancer of zeste homolog 2 (EZH2) is a major tumor marker and an effective therapeutic target for ovarian cancer, but the underlying molecular mechanism remains unclear. The present study investigated the biological effects of EZH2 knockout in SKOV3 cells in vitro and in vivo and explored the molecular mechanism by integrated analysis of messenger RNA sequencing (mRNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) data. Methods The CRISPR/Cas9 system was used to establish EZH2 knockout SKOV3 cells. Protein expression was evaluated by Western blotting. The effect of EZH2 on ovarian cancer was evaluated in vitro with MTT, wound healing, Transwell, and apoptosis assays and in vivo with a xenograft model. mRNA-seq and ChIP-seq were performed to explore the molecular mechanism underlying the biological function of EZH2. Immunohistochemical staining (IHC) of tissue arrays was used to analyze the correlations among EZH2 and CYP27B1 expressions and prognosis. Results We obtained three EZH2 knockout subclones. EZH2 knockout SKOV3 cells exhibited significantly suppressed proliferation, migration, and invasion and a significantly increased apoptosis rate. The subcutaneous tumor formation rate decreased from 100 to 0% in the EZH2 knockout group. Integrated analysis of the mRNA-seq and ChIP-seq data identified 1,455 significantly upregulated genes with matching downregulated trimethylation of histone H3 lysine 27 (H3K27me3) methylation binding sites in 1b11H cells compared to SKOV3 cells. The set of downregulated genes in EZH2 knockout cells was highly enriched in genes regulating the activation of steroid biosynthesis; the top-ranked hub gene was CYP27B1. The EZH2 and CYP27B1 expression levels showed a statistically significant inverse correlation, which was also associated with unfavorable prognosis. The in vitro experiment demonstrated that CYP27B1 can suppress the proliferation, migration, and invasion of ovarian cancer cells. Moreover, the levels of AKT and p-AKT were significantly increased, whereas STAT3 was downregulated, in 1b11H cells compared to SKOV3 cells. Moreover, STAT3 and AKT overexpression was observed in 1b11H siRNA for CYP27B1 (siCYP27B1) cells. Conclusion EZH2 plays an important role in promoting cell proliferation, migration, and invasion in ovarian cancer by regulating the core steroid biosynthesis gene via H3K27me3 methylation. Moreover, CYP27B1, the steroid biosynthesis hub gene, might be a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Xiao Huo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiuhong Qian
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Obstetrics and Gynecology, Qilu Hospital, Shan Dong University, Jinan, China
| | - Xiangwen Ma
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Peng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Gui
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
H3K4me3 Is a Potential Mediator for Antiproliferative Effects of Calcitriol (1α,25(OH)2D3) in Ovarian Cancer Biology. Int J Mol Sci 2020; 21:ijms21062151. [PMID: 32245092 PMCID: PMC7139961 DOI: 10.3390/ijms21062151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Posttranslational histone modification plays an important role in tumorigenesis. Histone modification is a dynamic response of chromatin to various signals, such as the exposure to calcitriol (1α,25(OH)2D3). Recent studies suggested that histone modification levels could be used to predict patient outcomes in various cancers. Our study evaluated the expression level of histone 3 lysine 4 trimethylation (H3K4me3) in a cohort of 156 epithelial ovarian cancer (EOC) cases by immunohistochemical staining and analyzed its correlation to patient prognosis. The influence of 1α,25(OH)2D3 on the proliferation of ovarian cancer cells was measured by BrdU proliferation assay in vitro. We could show that higher levels of H3K4me3 were correlated with improved overall survival (median overall survival (OS) not reached vs. 37.0 months, p = 0.047) and identified H3K4me3 as a potential prognostic factor for the present cohort. Ovarian cancer cell 1α,25(OH)2D3 treatment induced H3K4me3 protein expression and exhibited antiproliferative effects. By this, the study suggests a possible impact of H3K4me3 expression on EOC progression as well as its relation to calcitriol (1α,25(OH)2D3) treatment. These results may serve as an explanation on how 1α,25(OH)2D3 mediates its known antiproliferative effects. In addition, they further underline the potential benefit of 1α,25(OH)2D3 supplementation in context of ovarian cancer care.
Collapse
|
25
|
Zacharopoulou N, Kallergi G, Alkahtani S, Tsapara A, Alarifi S, Schmid E, Sukkar B, Kampranis S, Lang F, Stournaras C. The histone demethylase KDM2B activates FAK and PI3K that control tumor cell motility. Cancer Biol Ther 2020; 21:533-540. [PMID: 32175798 DOI: 10.1080/15384047.2020.1736481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent studies revealed that the histone demethylase KDM2B regulates the epithelial markers E-Cadherin and ZO-1, the RhoA/B/C-small-GTPases and actin cytoskeleton organization, in DU-145 prostate- and HCT-116 colon-tumor cells. Here we addressed the role of KDM2B in the activation of Focal Adhesion Kinase (FAK)-signaling and its involvement in regulating tumor cell motility. We used RT-PCR for gene transcriptional analysis, Western blotting for the assessment of protein expression and activity and wound-healing assay for the study of cell migration. KDM2B overexpression or silencing controls the activity of FAK in DU-145 prostate- and HCT-116 colon-tumor cells without affecting gene transcription and protein expression of this kinase. Upon KDM2B overexpression in DU-145 cells, significantly enhanced migration was observed, which was abolished in cells pretreated by the specific phosphoinositide-3 kinase (PI3 K) inhibitor LY294002, implying involvement of FAK/PI3 K signaling in the migration process. In line with this, the p85-PI3 K-subunit was downregulated upon knockdown of KDM2B in DU-145 cells, while the opposite effect became evident in KDM2B-overexpressing cells. These results revealed a novel functional role of KDM2B in regulating the activation of the FAK/PI3 K signaling in prostate cancer cells that participates in the control of cell motility.
Collapse
Affiliation(s)
- Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece.,Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Galatea Kallergi
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Saad Alkahtani
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Anna Tsapara
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Saud Alarifi
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece.,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Evi Schmid
- Department of Pediatric Surgery & Pediatric Urology, Children's Hospital, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Basma Sukkar
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Sotirios Kampranis
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| | - Florian Lang
- Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Voutes, Greece
| |
Collapse
|
26
|
Zhai L, Tai WL, Pan YQ, Luo JB, Ma L, Zheng YT, Guo MY, Zhang X. Expression of EZH2 and P53 and their correlation in ovarian cancer tissues. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:456-464. [PMID: 32269682 PMCID: PMC7137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Previous researches have demonstrated that EZH2 expression is increased in many solid tumors and is closely related to the worse progression, transcriptional silence, distal metastasis, and differential inhibition of tumors. P53 can regulate many cells signaling pathways and play an important role in cell cycle, cell apoptosis, and cell senescence. However, there are few reports on the expression of EZH2 and p53 in ovarian cancer and their correlation with the ovarian cancer. The purpose is to elucidate the expression of EZH2 and p53 in ovarian cancer and to study the relationship of EZH2 and p53 with the clinical parameters of ovarian cancer. In this study, both mRNA and protein level of EZH2 in ovarian cancer group was significantly higher than that in borderline, benign, and normal group; while the mRNA and protein level of p53 was significantly lower than that in borderline, benign, and normal group. The expression of EZH2 protein was mainly located in the cytoplasm and nucleus, while mutated p53 protein was mainly located in the nucleus. Furthermore, the expression of EZH2 is closely related to the FIGO stage and histological grade of ovarian cancer. EZH2 and P53 are closely related to the occurrence of ovarian cancer. We speculate that EZH2 may promote the development of ovarian cancer by inhibiting the expression of p53, suggesting that p53 may be the target gene of EZH2.
Collapse
Affiliation(s)
- Li Zhai
- Department of Clinical Laboratory, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Wen-Lin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical UniversityKunming, China
| | - Yu-Qing Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Experimental Diagnosis, Yunnan Key Laboratory of Laboratory MedicineKunming, China
| | - Jian-Bo Luo
- Department of Clinical Laboratory, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Li Ma
- Department of Clinical Laboratory, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Ya-Ting Zheng
- Department of Clinical Laboratory, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Meng-Yue Guo
- Department of Clinical Laboratory, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| | - Xi Zhang
- Department of Clinical Laboratory, Cancer Hospital of Yunnan Province, The Third Affiliated Hospital of Kunming Medical UniversityKunming, Yunnan, China
| |
Collapse
|
27
|
Hale R, Sandakly S, Shipley J, Walters Z. Epigenetic Targets in Synovial Sarcoma: A Mini-Review. Front Oncol 2019; 9:1078. [PMID: 31681608 PMCID: PMC6813544 DOI: 10.3389/fonc.2019.01078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 01/25/2023] Open
Abstract
Synovial Sarcomas (SS) are a type of Soft Tissue Sarcoma (STS) and represent 8-10% of all STS cases. Although SS can arise at any age, it typically affects younger individuals aged 15-35 and is therefore part of both pediatric and adult clinical practices. SS occurs primarily in the limbs, often near joints, but can present anywhere. It is characterized by the recurrent pathognomonic chromosomal translocation t(X;18)(p11.2;q11.2) that most frequently fuses SSX1 or SSX2 genes with SS18. This leads to the expression of the SS18-SSX fusion protein, which causes disturbances in several interacting multiprotein complexes such as the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, also known as the BAF complex and the Polycomb Repressive Complex 1 and 2 (PRC1 and PRC2). Furthermore, this promotes widespread epigenetic rewiring, leading to aberrant gene expression that drives the pathogenesis of SS. Good prognoses are characterized predominantly by small tumor size and young patient age. Whereas, high tumor grade and an increased genomic complexity of the tumor constitute poor prognostic factors. The current therapeutic strategy relies on chemotherapy and radiotherapy, the latter of which can lead to chronic side effects for pediatric patients. We will focus on the known roles of SWI/SNF, PRC1, and PRC2 as the main effectors of the SS18-SSX-mediated genome modifications and we present existing biological rationale for potential therapeutic targets and treatment strategies.
Collapse
Affiliation(s)
- Ryland Hale
- Translational Epigenomics Team, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sami Sandakly
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Zoë Walters
- Translational Epigenomics Team, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
28
|
Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus 2019; 9:431-441. [PMID: 30059280 PMCID: PMC7000146 DOI: 10.1080/19491034.2018.1498707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aberrant levels of histone modifications lead to chromatin malfunctioning and consequently to various developmental defects and human diseases. Therefore, the proteins bearing the ability to modify histones have been extensively studied and the molecular mechanisms of their action are now fairly well understood. However, little attention has been paid to naturally occurring alternative isoforms of chromatin modifying proteins and to their biological roles. In this review, we focus on mammalian KDM2A and KDM2B, the only two lysine demethylases whose genes have been described to produce also an alternative isoform lacking the N-terminal demethylase domain. These short KDM2A/B-SF isoforms arise through alternative promoter usage and seem to play important roles in development and disease. We hypothesise about the biological significance of these alternative isoforms, which might represent a more common evolutionarily conserved regulatory mechanism.
Collapse
Affiliation(s)
- Tomáš Vacík
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Dijana Lađinović
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| | - Ivan Raška
- a Institute of Biology and Medical Genetics, First Faculty of Medicine , Charles University and General University Hospital in Prague , Praha 2 , Czech Republic
| |
Collapse
|
29
|
Qi Y, Zhao Y. CBP-triggered KDM2B acetylation accelerates the carcinogenesis of colon cancer. J Cell Physiol 2019; 235:2901-2910. [PMID: 31531877 DOI: 10.1002/jcp.29196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
Abstract
Lysine (K)-specific demethylase 2B (KDM2B) has been testified to be an oncogene in diverse cancers, which joins in mediating the carcinogenesis of cancers. Nonetheless, the function of KDM2B in colon cancer remains unexplored. The study attempted to disclose the influences of KDM2B acetylation in the progression of colon cancer. SW48 and SUN-C1 cells were transfected with Flag-KDM2B and administrated by trichostatin A and nicotinamide for 24 hr. Immunoprecipitation with a Flag antibody followed by western blot with acetyl-lysine-specific antibody was executed to detect KDM2B acetylation. The correlation between CREB binding protein (CBP) and KDM2B was then investigated. The K-R and K-Q mutants were constructed and the impacts of KDM2B on demethylation of nucleosomal substrates, p21, and puma transcription and the carcinogenesis of colon cancer were probed. CBP immediately evoked KDM2B acetylation at lysine residue 765 in colon cancer cells. Acetylation of KDM2B obviously destroyed the relevance with nucleosomes, demethylation of nucleosomal substrates, and repressed p21 and puma transcription. More important, KDM2B acetylation restrained SUN-C1 cells proliferation and colony formation, meanwhile, hindered cell migration and invasion. Beyond that, the tumor formation was repressed by KDM2B acetylation. The observations testified that CBP-triggered KDM2B acetylation accelerated the carcinogenesis of colon cancer.
Collapse
Affiliation(s)
- Yuxi Qi
- Department of Anus and Intestine Surgery, Jining No.1 People's Hospital, Jining, China.,Affiliated Jining NO.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Yanning Zhao
- Department of Anus and Intestine Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
30
|
Shi X, Fan M. Tip60-dependent acetylation of KDM2B promotes osteosarcoma carcinogenesis. J Cell Mol Med 2019; 23:6154-6163. [PMID: 31218831 PMCID: PMC6714504 DOI: 10.1111/jcmm.14497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/05/2019] [Accepted: 05/23/2019] [Indexed: 01/11/2023] Open
Abstract
Overexpression of KDM2B is frequently occurred in various human solid tumours, and the high levels of KDM2B are associated with tumourigenesis. However, whether and how its activities might be modulated to facilitate tumour progression is still unclear. Immunoprecipitation and immunoblotting were carried out to detect the acetylation of KDM2B. Nucleosomes and mononucleosomes were prepared and the demethylation activity of KDM2B was detected in these two substrates. The effects of KDM2B acetylation on the transcription of target genes, as well as tumour growth and metastasis were then studied. KDM2B was acetylated in osteosarcoma cancer cell lines (MG‐63 and HOS). This modification occurred at lysine 758 and catalysed by Tip60. Acetylation of KDM2B decreased the capacity of KDM2B in binding with nucleosomes. KDM2B acetylation diminished its demethylation activity towards nucleosomal substrates rather than towards bulk histone. Besides, acetylation of KDM2B diminished its ability to bind with the promoters of p21 and puma. Moreover, the promoting effects of KDM2B acetylation on tumour cells' proliferation and metastasis, and in vivo tumour growth were dependent on Tip60. KDM2B is acetylated at lysine 758 by Tip60 in human osteosarcoma cells. Acetylation of KDM2B diminishes its association with nucleosomes, and thus increasing methylation of H3K36 at its target genes as well as enhancing its oncogenic effects.
Collapse
Affiliation(s)
- Xin Shi
- Department of Spinal Surgery, Linyi People's Hospital, Beicheng New District Hospital, Linyi, China
| | - Mingfu Fan
- Department of Spinal Surgery, Linyi People's Hospital, Beicheng New District Hospital, Linyi, China
| |
Collapse
|
31
|
Jones BA, Varambally S, Arend RC. Histone Methyltransferase EZH2: A Therapeutic Target for Ovarian Cancer. Mol Cancer Ther 2019; 17:591-602. [PMID: 29726819 DOI: 10.1158/1535-7163.mct-17-0437] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/28/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths in females in the United States. There were an estimated 22,440 new cases and 14,080 deaths due to ovarian cancer in 2017. Most patients present with advanced-stage disease, revealing the urgent need for new therapeutic strategies targeting pathways of tumorigenesis and chemotherapy resistance. While multiple genomic changes contribute to the progression of this aggressive disease, it has become increasingly evident that epigenetic events play a pivotal role in ovarian cancer development. One of the well-studied epigenetic modifiers, the histone methyltransferase EZH2, is a member of polycomb repressive complex 2 (PRC2) and is commonly involved in transcriptional repression. EZH2 is the enzymatic catalytic subunit of the PRC2 complex that can alter gene expression by trimethylating lysine 27 on histone 3 (H3K27). In ovarian cancer, EZH2 is commonly overexpressed and therefore potentially serves as an effective therapeutic target. Multiple small-molecule inhibitors are being developed to target EZH2, which are now in clinical trials. Thus, in this review, we highlight the progress made in EZH2-related research in ovarian cancer and discuss the potential utility of targeting EZH2 with available small-molecule inhibitors for ovarian cancer. Mol Cancer Ther; 17(3); 591-602. ©2018 AACR.
Collapse
Affiliation(s)
- Bayley A Jones
- University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
32
|
Domizi P, Malizia F, Chazarreta-Cifre L, Diacovich L, Banchio C. KDM2B regulates choline kinase expression and neuronal differentiation of neuroblastoma cells. PLoS One 2019; 14:e0210207. [PMID: 30629659 PMCID: PMC6328129 DOI: 10.1371/journal.pone.0210207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
The process of neuronal differentiation is associated with neurite elongation and membrane biogenesis, and phosphatidylcholine (PtdCho) is the major membrane phospholipid in mammalian cells. During neuroblast differentiation, the transcription of two genes involved in PtdCho biosynthesis are stimulated: Chka gene for choline kinase (CK) alpha isoform and Pcyt1a gene for CTP:phosphocholine cytidylyltransferase (CCT) alpha isoform. Here we show that CKα is essential for neuronal differentiation. In addition, we demonstrated that KDM2B regulates CKα expression and, as a consequence, neuronal differentiation. This factor is up-regulated in the course of the neuroblasts proliferative and undifferentiated state and down-regulated during differentiation induced by retinoic acid (RA). During proliferation, KDM2B binds to the Box2 located in the Chka promoter repressing its transcription. Interestingly, KDM2B knockdown enhances the levels of CKα expression in neuroblast cells and induces neuronal differentiation even in the absence of RA. These results suggest that KDM2B is required for the appropriate regulation of CKα during neuronal differentiation and to the maintaining of the undifferentiated stage of neuroblast cells.
Collapse
Affiliation(s)
- Pablo Domizi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Florencia Malizia
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lorena Chazarreta-Cifre
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET) Ocampo y Esmeralda, Predio CONICET and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
33
|
Zheng Q, Fan H, Meng Z, Yuan L, Liu C, Peng Y, Zhao W, Wang L, Li J, Feng J. Histone demethylase KDM2B promotes triple negative breast cancer proliferation by suppressing p15INK4B, p16INK4A, and p57KIP2 transcription. Acta Biochim Biophys Sin (Shanghai) 2018; 50:897-904. [PMID: 30060056 DOI: 10.1093/abbs/gmy084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 02/01/2023] Open
Abstract
H3K4me3 and H3K36me2 histone demethylase KDM2B is an epigenetic regulatory factor involved in cell proliferation in numerous cells including breast cancer cells, however, the regulatory mechanism of KDM2B in cell proliferation of breast cancer cells, specifically in triple negative breast cancer (TNBC), remains largely unknown. In this study, we showed that higher expression level of KDM2B was associated with poor prognosis in TNBC. Using cell proliferation assay, we found that KDM2B promoted TNBC cell proliferation by suppressing the transcription of the cell cycle inhibitors p15INK4B, p16INK4A, and p57KIP2. Chromatin immunoprecipitation assay results showed that KDM2B bound to the promoters of these genes and thereby reduced the H3K4me3 and H3K36me2 levels, leading to the suppression of gene transcription in a histone demethylation activity-dependent manner. Silencing of p15INK4B, p16INK4A, and p57KIP2 in TNBC cells was shown to restore the promoting effect of KDM2B on TNBC cell proliferation. The present study reveals a novel cell regulatory mechanism through which KDM2B promotes TNBC cell proliferation by binding to the promoters of p15INK4B, p16INK4A, and p57KIP2, which reduces H3K4me3 and H3K36me2 levels to suppress gene transcription.
Collapse
Affiliation(s)
- Qingping Zheng
- The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Hongjia Fan
- The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Zhenzhen Meng
- Department of Laboratory Medicine & Central Laboratory, Jinzhou Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Lin Yuan
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Cuicui Liu
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - You Peng
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Weiwei Zhao
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Lulu Wang
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jing Li
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University & Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| | - Jing Feng
- The Third School of Clinical Medicine, Southern Medical University, Guangdong Province, Guangzhou, China
- Department of Laboratory Medicine & Central Laboratory, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
- Shanghai University of Medicine & Health Sciences, Affiliated Sixth People’s Hospital South Campus, Shanghai, China
| |
Collapse
|
34
|
Yan M, Yang X, Wang H, Shao Q. The critical role of histone lysine demethylase KDM2B in cancer. Am J Transl Res 2018; 10:2222-2233. [PMID: 30210666 PMCID: PMC6129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
The discovery of histone demethylases has revealed the dynamic nature of the regulation of histone methylation. KDM2B is an important histone lysine demethylase that removes methyl from H3K36me2 and H3K4me3. It participates in many aspects of normal cellular processes such as cell senescence, cell differentiation and stem cell self-renewal. Recent studies also showed that KDM2B was overexpressed in various types of cancers. This review focuses primarily on the current knowledge of KDM2B and its function in cancer development.
Collapse
Affiliation(s)
- Meina Yan
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| | - Xinxin Yang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| | - Hui Wang
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| | - Qixiang Shao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
35
|
Li H, Zhang H, Wang Y. Centromere protein U facilitates metastasis of ovarian cancer cells by targeting high mobility group box 2 expression. Am J Cancer Res 2018; 8:835-851. [PMID: 29888106 PMCID: PMC5992511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023] Open
Abstract
Ovarian carcinoma is a fatal malignancy in gynecological malignancies, and the prognosis still remains poor due to the lack of effective therapeutic targets. This study demonstrated that centromere protein U (CENPU) was up-regulated in ovarian cancer. The ectopic expression of CENPU in ovarian cancer cells expedited the proliferation, migration and invasion of ovarian cancer cells in vitro. Besides, the over-expression of CENPU markedly advanced the tumorigenicity of ovarian cancer cells in vivo whereas knocked-down CENPU resulted in opposite outcome. In addition, high mobility group box 2 (HMGB2) identified as a down-target of CENPU in ovarian cancer cells was positively correlated with the expression level of CENPU in ovarian cancer tissues. Finally, it was demonstrated that CENPU could enhance the aggressiveness ability of the ovarian cancer cells by regulating HMGB2. This research provided new insight for CENPU, promoted the progression of ovarian cancer and represented a novel target for anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou 450007, P. R. China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou 450007, P. R. China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou 450007, P. R. China
| |
Collapse
|
36
|
Endometriosis Malignant Transformation: Epigenetics as a Probable Mechanism in Ovarian Tumorigenesis. Int J Genomics 2018; 2018:1465348. [PMID: 29780815 PMCID: PMC5892233 DOI: 10.1155/2018/1465348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Endometriosis, defined as the presence of ectopic endometrial glands and stroma outside the uterine cavity, is a chronic, hormone-dependent gynecologic disease affecting millions of women across the world, with symptoms including chronic pelvic pain, dysmenorrhea, dyspareunia, dysuria, and subfertility. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation, with the involvement of various mechanisms of development. More and more evidence reveals an important contribution of epigenetic modification not only in endometriosis but also in mechanisms of endometriosis malignant transformation, including DNA methylation and demethylation, histone modifications, and miRNA aberrant expressions. In this present review, we mainly summarize the research progress about the current knowledge regarding the epigenetic modifications of the relations between endometriosis malignant transformation and ovarian cancer in an effort to identify some risk factors probably associated with ectopic endometrium transformation.
Collapse
|
37
|
Chen Z, Yang P, Li W, He F, Wei J, Zhang T, Zhong J, Chen H, Cao J. Expression of EZH2 is associated with poor outcome in colorectal cancer. Oncol Lett 2017; 15:2953-2961. [PMID: 29435024 PMCID: PMC5778885 DOI: 10.3892/ol.2017.7647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/17/2017] [Indexed: 12/31/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2), the critical component of polycomb group protein family, has been demonstrated to be overexpressed in various types of human cancer, including hepatocellular carcinoma, breast, bladder and lung cancer. The mechanism of how EZH2 promotes oncogenesis has also been well studied. However, little is known about the role of EZH2 in colorectal cancer (CRC). The main purpose of the present study was to analyze the association between EZH2 expression and the clinicopathological features of CRC. Therefore, the mRNA and protein expression levels were analyzed in tumor tissues and adjacent non-cancerous tissues by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The expression of EZH2 was demonstrated to be significantly increased in tumor tissues compared with adjacent noncancerous tissues, according to the results of western blot analysis and RT-qPCR in the majority of cases. Patients with low EZH2 expression had a longer overall survival rate compared with those with high EZH2 expression. An analysis of the association between clinicopathological features and EZH2 expression indicated that high EZH2 expression was significantly associated with tumor stage, tumor size, histological differentiation and lymph node metastasis. Multivariate analysis demonstrated that high EZH2 expression was an independent predictor of overall survival. In conclusion, to the best of our knowledge, the data presented in the present study is the first to indicate that EZH2 is upregulated in CRC and may serve as a predictor of poor outcome for patients with CRC.
Collapse
Affiliation(s)
- Zhuanpeng Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wanglin Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Feng He
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jianchang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Junbin Zhong
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Huacui Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
38
|
Abstract
SummarySomatic cell nuclear transfer (SCNT) is an important technique for life science research. However, most SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we show that abnormal Xi occurs in somatic cell NT blastocysts, whereas in female blastocysts derived from cumulus cell nuclear transfer, both X chromosomes were inactive. H3K27me3 removal by Kdm6a mRNA overexpression could significantly improve preimplantation development of NT embryos, and even reached a 70.2% blastocyst rate of cleaved embryos compared with the 38.5% rate of the control. H3K27me3 levels were significantly reduced in blastomeres from cloned blastocysts after overexpression of Kdm6a. qPCR indicated that rDNA transcription increased in both NT embryos and 293T cells after overexpression of Kdm6a. Our findings demonstrate that overexpression of Kdm6a improved the development of cloned mouse embryos by reducing H3K27me3 and increasing rDNA transcription.
Collapse
|