1
|
Peng M, Ye L, Yang L, Liu X, Chen Y, Huang G, Jiang Y, Wang Y, Li D, He J, Qiu Z, Xiang T, Guo S. CAVIN2 is frequently silenced by CpG methylation and sensitizes lung cancer cells to paclitaxel and 5-FU. Epigenomics 2020; 12:1793-1810. [PMID: 33016107 DOI: 10.2217/epi-2020-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: To explore the biological functions and clinical significance of CAVIN2 in lung cancer. Materials & methods: Methylation-specific PCR was used to measure promoter methylation of CAVIN2. The function of CAVIN2 was tested by Cell Counting Kit-8, colony formation, Transwell, flow cytometric analysis, acridine orange/ethidium bromide, chemosensitivity assay and xenograft assay. Results: CAVIN2 is significantly downregulated by promoter methylation in lung cancer. CAVIN2 overexpression inhibits lung cancer cell migration and invasion. Furthermore, ectopic expression of CAVIN2 inhibits cell proliferation in vivo and in vitro by inducing G2/M cell cycle arrest, which sensitizes the chemosensitivity of lung cancer cells to paclitaxel and 5-fluorouracil, but not cisplatin. Conclusion: CAVIN2 is a tumor suppressor in non-small-cell lung cancer and can sensitize lung cancer cells to paclitaxel and 5-fluorouracil.
Collapse
Affiliation(s)
- Mingyu Peng
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Ye
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Yang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinzhu Liu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuhan Chen
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guichuan Huang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Jiang
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yan Wang
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dairong Li
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin He
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology & Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shuliang Guo
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Zhu J, Wang L, Liao R. Long non-coding RNA SDPR-AS affects the development of non-small cell lung cancer by regulating SDPR through p38 MAPK/ERK signals. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3172-3179. [PMID: 31352804 DOI: 10.1080/21691401.2019.1642904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfei Zhu
- Department of Respiratory Medicine, Taizhou Central Hospital, Taizhou, Zhejiang, China
| | - Lili Wang
- Department of ICU, The People’s Hospital of Jiaozuo City, Jiaozuo, Hebei, China
| | - Ruomin Liao
- Department of Respiratory, Shanghai General Hospital, Shanghai Gongji Hospital, Shanghai, China
| |
Collapse
|
3
|
Long noncoding RNAs in cancer cells. Cancer Lett 2019; 419:152-166. [PMID: 29414303 DOI: 10.1016/j.canlet.2018.01.053] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Abstract
Long noncoding RNA (lncRNA) has recently been investigated as key modulators that regulate many biological processes in human cancers via diverse mechanisms. LncRNAs can interact with macromolecules such as DNA, RNA, or protein to exert cellular effects and to act as either tumor promoters or tumor suppressors in various malignancies. Moreover, the aberrant expression of lncRNAs may be detected in multiple cancer phenotypes by employing the rapidly developing modern gene chip technology and bioinformatics analysis. Herein, we highlight the mechanisms of action of lncRNAs, their functional cellular roles and their involvement in cancer progression. Finally, we provide an overview of recent progress in the lncRNA field and future potential for lncRNAs as cancer diagnostic markers and therapeutics.
Collapse
|
4
|
Wu H, Yu DH, Wu MH, Huang T. Long non-coding RNA LOC541471: A novel prognostic biomarker for head and neck squamous cell carcinoma. Oncol Lett 2018; 17:2457-2464. [PMID: 30675311 DOI: 10.3892/ol.2018.9831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer. Early detection and management of HNSCC may prevent progression of the disease. Long non-coding RNAs (lncRNAs) may serve as prognostic biomarkers for various cancer types. The current study downloaded an RNA-Seq dataset containing 43 tumor-normal pairs. An independent t-test identified that the expression level of lncRNA LOC541471 was significantly increased in tumor tissues compared with healthy tissues. Additionally, the current study demonstrated that high lncRNA LOC541471 expression was significantly associated with increasing lymph node metastasis classification and perineural invasion. A multivariate Cox regression analysis revealed that high lncRNA LOC541471 expression levels were an independent predictor for reduced overall survival (n=487) and relapse-free survival (n=355). According to the anatomic neoplasm subdivision, HNSCC samples were classified as oropharyngeal carcinoma (n=297), oral carcinoma (n=80), laryngeal carcinoma and hypopharyngeal carcinoma (n=123). A negative association was revealed between lncRNA LOC541471 expression and overall survival in all subtypes of HNSCC. Therefore, lncRNA LOC541471 is significantly negatively associated with overall survival and relapse-free survival of patients with HNSCC and may be considered a potential prognostic factor for HNSCC.
Collapse
Affiliation(s)
- Hua Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Da Hai Yu
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiation Oncology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Mian Hua Wu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Teng Huang
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China.,Department of Radiation Oncology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
5
|
Peng D, Hu Z, Wei X, Ke X, Shen Y, Zeng X. NT5Einhibition suppresses the growth of sunitinib-resistant cells and EMT course and AKT/GSK-3β signaling pathway in renal cell cancer. IUBMB Life 2018; 71:113-124. [PMID: 30281919 DOI: 10.1002/iub.1942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Dan Peng
- Department of Nuclear Medicine; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Zhiquan Hu
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xian Wei
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xinwen Ke
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Yuanqing Shen
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| | - Xing Zeng
- Department of Urology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan 430030 Hubei China
| |
Collapse
|
6
|
Zhong Z, Li H, Zhong H, Zhou T, Xie W, Lin Z. A systematic review and meta-analyses of the relationship between glutathione S-transferase gene polymorphisms and renal cell carcinoma susceptibility. BMC MEDICAL GENETICS 2018; 19:98. [PMID: 29884137 PMCID: PMC5993999 DOI: 10.1186/s12881-018-0620-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/25/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Association of GSTM1- and GSTT1-null genotypes, GSTP1 A/G gene polymorphism with renal cell carcinoma (RCC) susceptibility was detected, and the relationship between the GSTM1/GSTT1-null genotype and clinical TNM stages of RCC was assessed, using meta-analysis method. METHODS Association investigations according to eligibility criteria were searched and identified from the databases of Cochrane Library, PubMed, and Embase from establishment time of databases to July 1, 2017, and eligible reports were analyzed by meta-analysis. 95% confidence intervals (CI) were also detected, and odds ratios (OR) was used to express the results for dichotomous data. RESULTS This meta-analysis indicated that there was no an association between GSTM1-null genotype, GSTT1-null genotype, GSTP1 A/G gene polymorphism and RCC risk in the overall population of Caucasians or Asians. The dual GSTM1-GSTT1-null genotype was also not associated with RCC in the overall population of Caucasians. Interestingly, there was an association between the dual GSTM1-GSTT1-null genotype and the susceptibility of RCC in Asians. Relationship of the GSTM1-null genotype with clinical TNM stage of RCC was not observed in the overall population of Asians or Caucasians. In this meta-analysis, no association between the GSTT1-null genotype and clinical TNM stage of RCC was observed in Caucasians or Asians. Interestingly, GSTT1-null genotype was detected to be associated with the clinical TNM stages in patients with RCC in the overall population. CONCLUSION The dual GSTM1-GSTT1-null genotype is detected to be associated with the onset of RCC in Asians, and there is an association between the GSTT1-null genotype and the clinical TNM stages in patients with RCC in the overall population.
Collapse
Affiliation(s)
- Zhiqing Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041 China
| | - Hongyan Li
- Department of Nephrology, Huadu District People’s Hospital of Guangzhou, Southern Medical University, Guangzhou, 510800 China
| | - Hongzhen Zhong
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041 China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041 China
| | - Weiji Xie
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041 China
| | - Zhijun Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongsha Road, Shantou, 515041 China
| |
Collapse
|
7
|
Huang Z, Lei W, Hu H, Zhang H, Zhu Y. H19 promotes non‐small‐cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR‐17. J Cell Physiol 2018; 233:6768-6776. [PMID: 29693721 DOI: 10.1002/jcp.26530] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiwen Huang
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Wei Lei
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Hai‐Bo Hu
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Hongyan Zhang
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Yehan Zhu
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
8
|
Jiang LT, Wan CH, Guo QH, Yang SJ, Wu JD, Cai J. Long Noncoding RNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes Renal Cell Carcinoma Progression via Sponging miRNA-429. Med Sci Monit 2018; 24:1794-1801. [PMID: 29588438 PMCID: PMC5887685 DOI: 10.12659/msm.909450] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background It is well known that long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is closely correlated with the tumorigenesis of multiple cancers, including renal cell carcinoma (RCC). However, the potential functional mechanism is still elusive. Material/Methods In our present research, quantitative real-time polymerase chain reaction (qRT-PCR) was performed for the measurement of MALAT1 and miR-429. CCK-8 assay and Transwell assay were performed for the proliferation, migration, and invasion abilities of RCC cells. Dual-luciferase reporter assay was performed to validate the interaction within MALAT1 and miR-429. Results Data found that MALAT1 was overexpressed in RCC clinical samples and cell lines. Moreover, loss-of-functional experiments showed that MALAT1 knockdown suppress the proliferation, migration, and invasion abilities of RCC cells. RT-PCR showed that miR-429 expression was downregulated in RCC cell lines, which was negatively correlated with that of MALAT1. Bioinformatics analysis suggested that miR-429 had complementary binding sequences with MALAT1, which was confirmed by dual-luciferase reporter assay. Conclusions In summary, our results concluded that MALAT1 functioned as an oncogene in RCC by sponging miR-429, acting as its competing endogenous RNA (ceRNA).
Collapse
Affiliation(s)
- Lin-Tao Jiang
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Chun-Hua Wan
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Qing-Hao Guo
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Shi-Jiang Yang
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jing-Dong Wu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Jun Cai
- Department of Emergency and Trauma Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
9
|
Moghaddas Sani H, Hejazian M, Hosseinian Khatibi SM, Ardalan M, Zununi Vahed S. Long non-coding RNAs: An essential emerging field in kidney pathogenesis. Biomed Pharmacother 2018; 99:755-765. [PMID: 29710473 DOI: 10.1016/j.biopha.2018.01.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022] Open
Abstract
Human Genome Project has made it clear that a majority of the genome is transcribed into the non-coding RNAs including microRNAs as well as long non-coding RNAs (lncRNAs) which both can affect different features of cells. LncRNAs are long heterogenous RNAs that regulate gene expression and a variety of signaling pathways involved in cellular homeostasis and development. Studies over the past decade have shown that lncRNAs have a major role in the kidney pathogenesis. The effective roles of lncRNAs have been recognized in renal ischemia, injury, inflammation, fibrosis, glomerular diseases, renal transplantation, and renal cell carcinoma. The present review outlines the role and function of lncRNAs in kidney pathogenesis as novel essential regulators. Molecular mechanism insights into the functions of lncRNAs in kidney pathophysiological processes may contribute to effective future therapeutics.
Collapse
Affiliation(s)
| | - Mina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|