1
|
Aly SH, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, Elshafei A, Elimam H, Ashraf A, Doghish AS. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct Integr Genomics 2024; 24:211. [PMID: 39528871 DOI: 10.1007/s10142-024-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer's complexity and heterogeneity continue to present significant challenges in its treatment and management. Emerging research has underscored the pivotal role of microRNAs (miRNAs) in breast cancer pathogenesis, acting as crucial regulators of gene expression. This review delivers an in-depth analysis of miRNAs, highlighting their dual functions as both oncogenes and tumor suppressors, and detailing their impact on key biological processes, including cell proliferation, apoptosis, and metastasis. The mechanisms underlying miRNA action, particularly their interactions with target mRNAs and the factors influencing these dynamics, are thoroughly explored. Additionally, the review discusses the therapeutic prospects of miRNAs, with a focus on innovative delivery systems like nanoparticles that improve the stability and effectiveness of miRNA-based therapies. It also addresses the anticancer effects of natural compounds, such as genistein, hesperidin, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), and glyceollins, which modulate miRNA expression and contribute to tumor growth inhibition. These advances seek to address the limitations of conventional therapies, paving the way for targeted interventions in breast cancer. By integrating current insights on miRNA biology, therapeutic strategies, and the potential of natural products to regulate miRNA expression, this review aims to shed light on miRNA- and natural product-based approaches as promising avenues for enhancing breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
2
|
Shademan B, Karamad V, Nourazarian A, Masjedi S, Isazadeh A, Sogutlu F, Avcı CB. MicroRNAs as Targets for Cancer Diagnosis: Interests and Limitations. Adv Pharm Bull 2023; 13:435-445. [PMID: 37646065 PMCID: PMC10460809 DOI: 10.34172/apb.2023.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
MicroRNAs are small RNAs with ability to attach to the large number of RNA that regulate gene expression on post-transcriptional level via inhibition or degradation of specific mRNAs. MiRNAs in cells are the primary regulators of functions such as cell growth, differentiation, and apoptosis and considerably influence cell function. The expression levels of microRNAs change in human diseases, including cancer. These changes highlight their essential role in cancer pathogenesis. Ubiquitous irregular expression profiles of miRNAs have been detected in various human cancers using genome-wide identification techniques, which are emerging as novel diagnostic and prognostic cancer biomarkers of high specificity and sensitivity. The measurable miRNAs with enhanced stability in blood, tissues, and other body fluids provide a comprehensive source of miRNA-dependent biomarkers for human cancers. The leading role of miRNAs as potential biomarkers in human cancers is discussed in this article. In addition, the interests and difficulties of miRNAs as biomarkers have been explored.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Sepideh Masjedi
- Department of Cellular and Molecular Biology Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Cigir Biray Avcı
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| |
Collapse
|
3
|
Liu S, Li L, Ren D. Anti-Cancer Potential of Phytochemicals: The Regulation of the Epithelial-Mesenchymal Transition. Molecules 2023; 28:5069. [PMID: 37446730 DOI: 10.3390/molecules28135069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A biological process called epithelial-mesenchymal transition (EMT) allows epithelial cells to change into mesenchymal cells and acquire some cancer stem cell properties. EMT contributes significantly to the metastasis, invasion, and development of treatment resistance in cancer cells. Current research has demonstrated that phytochemicals are emerging as a potential source of safe and efficient anti-cancer medications. Phytochemicals could disrupt signaling pathways related to malignant cell metastasis and drug resistance by suppressing or reversing the EMT process. In this review, we briefly describe the pathophysiological properties and the molecular mechanisms of EMT in the progression of cancers, then summarize phytochemicals with diverse structures that could block the EMT process in different types of cancer. Hopefully, these will provide some guidance for future research on phytochemicals targeting EMT.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Lingyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| | - Dongmei Ren
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China
| |
Collapse
|
4
|
Mishra AB, Nishank SS. Therapeutic targeting approach on epithelial-mesenchymal plasticity to combat cancer metastasis. Med Oncol 2023; 40:190. [PMID: 37247000 DOI: 10.1007/s12032-023-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) is a process in which epithelial cells lose their characteristics and acquire mesenchymal properties, leading to increased motility and invasiveness, which are key factors in cancer metastasis. Targeting EMP has emerged as a promising therapeutic approach to combat cancer metastasis. Various strategies have been developed to target EMP, including inhibition of key signaling pathways, such as TGF-β, Wnt/β-catenin, and Notch, that regulate EMP, as well as targeting specific transcription factors, such as Snail, Slug, and Twist, that promote EMP. Additionally, targeting the tumor microenvironment, which plays a critical role in promoting EMP, has also shown promise. Several preclinical and clinical studies have demonstrated the efficacy of EMP-targeting therapies in inhibiting cancer metastasis. However, further research is needed to optimize these strategies and improve their clinical efficacy. Overall, therapeutic targeting of EMP represents a promising approach for the development of novel cancer therapies that can effectively inhibit metastasis, a major cause of cancer-related mortality.
Collapse
|
5
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
6
|
Shi Y, Huang Q, Kong X, Zhao R, Chen X, Zhai Y, Xiong L. Current Knowledge of Long Non-Coding RNA HOTAIR in Breast Cancer Progression and Its Application. Life (Basel) 2021; 11:life11060483. [PMID: 34073224 PMCID: PMC8230351 DOI: 10.3390/life11060483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 01/17/2023] Open
Abstract
Breast cancer is one of the most devastating cancers with high morbidity and mortality in females worldwide. Breast tumorigenesis and further development present great uncertainty and complexity, and efficient therapeutic approaches still lack. Accumulating evidence indicates HOX transcript antisense intergenic RNA (HOTAIR) is dysregulated in cancers and has emerged as a novel hotspot in the field. In breast cancer, aberrant HOTAIR expression is responsible for advanced tumor progression by regulating multifarious signaling pathways. Besides, HOTAIR may act as competitive endogenous RNA to bind to several microRNAs and suppress their expressions, which can subsequently upregulate the levels of targeted downstream messenger RNAs, thereby leading to further cancer progression. In addition, HOTAIR works as a promising biomarker and predictor for breast cancer patients’ diagnosis or outcome prediction. Recently, HOTAIR is potentially considered to be a drug target. Here, we have summarized the induction of HOTAIR in breast cancer and its impacts on cell proliferation, migration, apoptosis, and therapeutic resistance, as well as elucidating the underlying mechanisms. This review aims to provide new insights into investigations between HOTAIR and breast cancer development and inspire new methods for studying the association in depth.
Collapse
Affiliation(s)
- Yubo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Qingyun Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
| | - Xinyu Kong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xinyue Chen
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yujia Zhai
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.S.); (Q.H.); (X.K.); (R.Z.); (X.C.); (Y.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
7
|
Liu BB, Ma T, Sun W, Gao WY, Liu JM, Li LQ, Li WY, Wang S, Guo YY. Centromere protein U enhances the progression of bladder cancer by promoting mitochondrial ribosomal protein s28 expression. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:119-129. [PMID: 33602882 PMCID: PMC7893492 DOI: 10.4196/kjpp.2021.25.2.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/26/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Bladder cancer is one of the most common types of cancer. Most gene mutations related to bladder cancer are dominantly acquired gene mutations and are not inherited. Previous comparative transcriptome analysis of urinary bladder cancer and control samples has revealed a set of genes that may play a role in tumor progression. Here we set out to investigate further the expression of two candidate genes, centromere protein U (CENPU) and mitochondrial ribosomal protein s28 (MRPS28) to better understand their role in bladder cancer pathogenesis. Our results confirmed that CENPU is up-regulated in human bladder cancer tissues at mRNA and protein levels. Gain-of-function and loss-of-function studies in T24 human urinary bladder cancer cell line revealed a hierarchical relationship between CENPU and MRPS28 in the regulation of cell viability, migration and invasion activity. CENPU expression was also up-regulated in in vivo nude mice xenograft model of bladder cancer and mice overexpressing CENPU had significantly higher tumor volume. In summary, our findings identify CENPU and MRPS28 in the molecular pathogenesis of bladder cancer and suggest that CENPU enhances the progression of bladder cancer by promoting MRPS28 expression.
Collapse
Affiliation(s)
- Bei-Bei Liu
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Tao Ma
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wei Sun
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wu-Yue Gao
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Jian-Min Liu
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Li-Qiang Li
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wen-Yong Li
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Sheng Wang
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yuan-Yuan Guo
- Department of Urology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| |
Collapse
|
8
|
Pan X, Ma X. A Novel Six-Gene Signature for Prognosis Prediction in Ovarian Cancer. Front Genet 2020; 11:1006. [PMID: 33193589 PMCID: PMC7593580 DOI: 10.3389/fgene.2020.01006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is the most malignant tumor in the female reproductive tract. Although abundant molecular biomarkers have been identified, a robust and accurate gene expression signature is still essential to assist oncologists in evaluating the prognosis of OC patients. In this study, samples from 367 patients in The Cancer Genome Atlas (TCGA) database were subjected to mRNA expression profiling. Then, we used a gene set enrichment analysis (GSEA) to screen genes correlated with epithelial–mesenchymal transition (EMT) and assess their prognostic power with a Cox proportional regression model. Six genes (TGFBI, SFRP1, COL16A1, THY1, PPIB, BGN) associated with overall survival (OS) were used to construct a risk assessment model, after which the patients were divided into high-risk and low-risk groups. The six-gene signature was an independent prognostic biomarker of OS for OC patients based on the multivariate Cox regression analysis. In addition, the six-gene model was validated with samples from the Gene Expression Omnibus (GEO) database. In summary, we established a six-gene signature relevant to the prognosis of OC, which might become a therapeutic tool with clinical applications in the future.
Collapse
Affiliation(s)
- Xin Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Han J, Shen X, Zhang Y, Wang S, Zhou L. Astragaloside IV suppresses transforming growth factor-β1-induced epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in glioma U251 cells. Biosci Biotechnol Biochem 2020; 84:1345-1352. [PMID: 32154763 DOI: 10.1080/09168451.2020.1737502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Astragaloside IV (AS#IV) has previously demonstrated antitumoractivity. We investigated the effect and mechanisms of AS#IV in relation to epithelial-mesenchymal transition (EMT), viainterference with the Wnt/β-catenin signaling pathway in gliomaU251 cells. Induction of glioma U251 cells by transforming growthfactor (TGF)#β1 activated EMT, including switching E#cadherin toN-cadherin and altering the expression of Wnt/β-catenin signalingpathway components such as vimentin, β-catenin, and cyclin-D1.AS-IV inhibited the viability, invasion, and migration of TGF-β1-induced glioma U251 cells. AS-IV also interfered with the TGF#β1-induced Wnt/β-catenin signaling pathway in glioma U251 cells.These findings indicate that AS#IV prohibits TGF#β1-induced EMTby disrupting the Wnt/β-catenin pathway in glioma U251 cells. AS#IV may thus be a potential candidate agent for treating glioma andother central nervous system tumors.
Collapse
Affiliation(s)
- Jinming Han
- Department of Spine Surgery, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| | - Xiaohan Shen
- Ningbo Diagnostic Pathology Center, Shanghai Cancer Center Ningbo Pathology Center, Ningbo Medical Center Lihuili Hospital , Ningbo, Zhejiang, China
| | - Yong Zhang
- Department of Orthopedics, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| | - Suying Wang
- Ningbo Diagnostic Pathology Center, Shanghai Cancer Center Ningbo Pathology Center, Ningbo, Zhejiang, China
| | - Leijie Zhou
- Department of Spine Surgery, Ningbo No. 6 Hospital , Ningbo, Zhejiang, China
| |
Collapse
|
10
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
11
|
Li D, Hao X, Dong Y, Zhang M, Song Y. PF4V1, an miRNA-875-3p target, suppresses cell proliferation, migration, and invasion in prostate cancer and serves as a potential prognostic biomarker. Cancer Manag Res 2019; 11:2299-2312. [PMID: 30962718 PMCID: PMC6432891 DOI: 10.2147/cmar.s187831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background PF4V1 is a novel protein in inflammation, angiogenesis, and cancer. However, the pathogenesis, underlying mechanisms, and the prognostic value of PF4V1 in prostate cancer (PCa) are still unclear. Materials and methods The PF4V1 expression and relation with survival were analyzed based on a large sample size in the Cancer Genome Atlas. In vitro, the overexpression of PF4V1 was conducted in DU145 and LNCaP cells. Cell Counting Kit-8, colony formation, wound healing, and Transwell® assays were preformed to test biological functions of PF4V1 and miR-875-3p in PCa. Western blotting was used to measure downstream markers in AKT pathways and epithelial–mesenchymal transition (EMT). In vivo experiments were performed to test the therapeutic effect of PF4V1 protein to PCa via a mouse model. Results The expression of PF4V1 was significantly lower in 497 PCa samples than in 52 normal controls (P=0.0012). High PF4V1 expression (normalized by TP53) was associated with poor disease-free survival (DFS) and good overall survival (OS) in PCa (P<0.05). PF4V1 was underexpressed in four PCa cell lines than in normal prostate cells. Overexpression of PF4V1 could significantly suppress the proliferation, migration, and invasion of DU145 and LNCaP cells (P<0.05). Moreover, miR-875-3p targeted the 3′-untranslated region of PF4V1 and derepressed the inhibitory function of PF4V1 in PCa (P<0.05). Key proteins such as p-AKT/p-ERK/Snail/Slug/N-cadherin were downregulated, while E-cadherin was upregulated when PF4V1 was overexpressed in PCa cells. Finally, intratumoral injection of PF4V1 protein could significantly inhibit PCa growth in vivo. Conclusion PF4V1 can suppress the proliferation, migration, and invasion of PCa cells by regulating AKT/ERK pathways and EMT. Elevated PF4V1/TP53 expression is correlated with poorer DFS and better OS in the patients with PCa. The miR-875-3p-PF4V1 axis may be a new therapeutic target site in PCa.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China, ;
| | - Xuanyu Hao
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yudi Dong
- Laboratory of Experimental Oncology, Medical Research Center, Shengjing Hospital of China Medical University, Benxi, Liaoning, People's Republic of China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China, ;
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China, ;
| |
Collapse
|
12
|
Ji H, Sang M, Liu F, Ai N, Geng C. miR-124 regulates EMT based on ZEB2 target to inhibit invasion and metastasis in triple-negative breast cancer. Pathol Res Pract 2018; 215:697-704. [PMID: 30611621 DOI: 10.1016/j.prp.2018.12.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/14/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is highly invasive and aggressive and lacks specific molecular targets to improve the prognosis. MicroRNAs (miRNAs) serve a role in promoting and suppressing tumors in various types of malignant cancer, including TNBC. However, the regulatory mechanism of miR-124 in TNBC has still remains unclear. METHODS Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-124. Cell viability was analyzed with CCK-8 assay. Cell colony formation ability was detected with colony formation assay. Cell invasion was measured with transwell assay. Dual luciferase reporter assay was conducted to verify whether ZEB2 is a target gene of miR-124. The mRNA and protein expression levels of ZEB2 and EMT markers were detected by quantitative real time PCR and western blot, respectively. RESULTS Our results showed that miR-124 was down-regulated in TNBC tissues and cells. Overexpression of miR-124 inhibited the proliferation, metastasis and epithelial-mesenchymal transition (EMT) of TNBC cells. Furthermore, ZEB2 3'UTR was considered to be a direct target of miR-124 with luciferase reporter assay. Rescue experiments confirmed that EMT was regulated by miR-124 via suppression of ZEB2. CONCLUSION miR-124 suppresses EMT and metastasis via ZEB2. Therefore, miR-124 may represent a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hong Ji
- Department of General Surgery, the 2nd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meixiang Sang
- Medical Research Center, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Liu
- Medical Research Center, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ning Ai
- Department of Interventional Radiology, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cuizhi Geng
- Department of General Surgery, the 4th Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
13
|
Chen D, You X, Pan Y, Liu Q, Cao G. TRIM37 promotes cell invasion and metastasis by regulating SIP1-mediated epithelial-mesenchymal transition in gastric cancer. Onco Targets Ther 2018; 11:8803-8813. [PMID: 30573971 PMCID: PMC6292391 DOI: 10.2147/ott.s178446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Tripartite motif containing 37 (TRIM37) has been demonstrated to function importantly during the progression of various cancers. However, the role of TRIM37 in gastric cancer (GC) remains elusive. Materials and methods TRIM37 mRNA and protein expressions were determined by qRT-PCR, Western blot, and immunohistochemical staining in GC specimens. The effects of TRIM37 on GC cells behavior were evaluated by transwell assays in vitro and metastasis assay in vivo, respectively. Besides, qRT-PCR, Western blot, and immunofluorescence staining were employed to detect the expressions of TRIM37 and epithelial–mesenchymal transition (EMT)-related markers. Results The present study revealed that TRIM37 mRNA or protein expression was significantly increased in GC tissues compared with that in paracancerous control tissues, and its aberrant overexpression was closely associated with clinical metastasis and poor prognosis in patients with GC. TRIM37 knockdown significantly suppressed GC cells migration and invasion in vitro, as well as metastasis in vivo. Inversely, TRIM37 overexpression exerted the opposite effects. Mechanistic studies suggested that SIP1-mediated EMT might be responsible for TRIM37-facilitated GC cells migration and invasion. Conclusion Our findings revealed that high TRIM37 expression was associated with clinical metastasis and poor survival in patients with GC. TRIM37 promoted GC cells migration and invasion via EMT, mediated by the transcription factor SIP1, thus providing a candidate target for GC treatment.
Collapse
Affiliation(s)
- Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Xiaolan You
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Yan Pan
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| | - Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou, Jiangsu Province, People's Republic of China,
| |
Collapse
|
14
|
Cao G, Chen D, Liu G, Pan Y, Liu Q. CPEB4 promotes growth and metastasis of gastric cancer cells via ZEB1-mediated epithelial- mesenchymal transition. Onco Targets Ther 2018; 11:6153-6165. [PMID: 30288051 PMCID: PMC6160272 DOI: 10.2147/ott.s175428] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Cytoplasmic polyadenylation element-binding protein 4 (CPEB4) has previously been reported to be associated with biological malignancy in various cancers. However, its function in tumor growth and metastasis in gastric cancer (GC) remains obscure. Here, we explored the functional and molecular mechanisms by which CPEB4 influences GC. Materials and methods The expression of CPEB4 was assessed using Western blot and immunohistochemistry in GC specimens. The roles of CPEB4 in GC cell proliferation, migration, and invasion were investigated by cell-counting kit-8 (CCK-8), colony formation, and EdU assay; wound-healing assay; and transwell assay, respectively. Quantitative real-time PCR (qRT-PCR), Western blot, and immunofluorescence staining were performed to detect the expressions of CPEB4 and epithelial–mesenchymal transition (EMT)-related markers. The function of CPEB4 on GC cell growth and metastasis was also determined in vivo through establishing subcutaneous xenograft tumor and lung metastatic mice model. Results The results revealed that the expression of CPEB4 was increased in GC tissues compared with matched normal tissues. High expression level of CPEB4 was significantly associated with clinical metastasis and unfavorable prognosis in patients with GC. Furthermore, CPEB4 silencing remarkably inhibited GC cells’ proliferation, invasion, and metastasis in vitro and in vivo. Conversely, CPEB4 overexpression achieved the opposite effects. Mechanically, we proved that ZEB1-mediated EMT might be involved in CPEB4-facilitated GC cells’ proliferation, invasion, and metastasis. Conclusion Our findings implied that CPEB4 expression predicted a worse prognosis in patients with GC. Besides, CPEB4 contributed to GC cells’ proliferation, migration, and invasion via ZEB1-mediated EMT.
Collapse
Affiliation(s)
- Gan Cao
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Dehu Chen
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Guiyuan Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Yan Pan
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| | - Qinghong Liu
- Department of General Surgery, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, People's Republic of China,
| |
Collapse
|
15
|
Ye D, Ma W, Xu J, Zhu G, Liu D, Liu C, Ding Y, Zhang Q. WTX inhibits gastric cancer migration through the reversal of epithelial-mesenchymal transition. Oncol Lett 2018; 16:4970-4976. [PMID: 30250562 PMCID: PMC6144879 DOI: 10.3892/ol.2018.9309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to investigate whether the expression of Wilms' tumor gene on X chromosome (WTX) affected the epithelial-mesenchymal transition (EMT) process and migration of gastric cancer cells. Stable WTX-overexpressing AGS cells (AGS.W) were established and analyzed by flow cytometry. The efficiency of the overexpression was verified by fluorescence microscopy, reverse transcription-quantitative polymerase chain reaction and western blotting. To analyze the expression of EMT-associated proteins, western blotting and immunofluorescence assays were performed. The migratory capability of the cells was detected by Transwell wound-healing assays, respectively. Compared with that of the control cells (AGS.veh), WTX expression was notably increased at mRNA (P<0.05) and protein levels (P<0.05) in the AGS.W gastric cancer cells. Morphological observations indicated that AGS.W cells transformed into spindle shapes, compared to AGS.veh cells, which maintained round or oval shapes. Furthermore, western blotting and immunofluorescence validated that the expression level of the epithelial marker epithelial-cadherin was significantly increased, whereas the expression levels of the mesenchymal markers neural-cadherin, β-catenin and vimentin were significantly decreased in the AGS.W cells compared with those in the AGS.veh cells. In addition, the overexpression of WTX decreased the migratory ability of AGS.W cells compared with AGS.veh cells. Exogenous expression of WTX inhibited gastric cancer cell migration by reversing EMT. The results of the present study describe a molecular feature that may be a promising target for future gastric cancer therapy strategies.
Collapse
Affiliation(s)
- Danli Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Wenxia Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Jiahui Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Guifang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Chun Liu
- Department of Pathology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Qingling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| |
Collapse
|
16
|
Zhu J, Wen K. Astragaloside IV inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells. Phytother Res 2018; 32:1289-1296. [PMID: 29480652 DOI: 10.1002/ptr.6057] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Jihong Zhu
- Department of Ultrasound; Huaihe Hospital of Henan University; Kaifeng 475000 Henan China
| | - Ke Wen
- Department of Ultrasound; Huaihe Hospital of Henan University; Kaifeng 475000 Henan China
| |
Collapse
|
17
|
Choupani J, Mansoori Derakhshan S, Bayat S, Alivand MR, Shekari Khaniani M. Narrower insight to SIRT1 role in cancer: A potential therapeutic target to control epithelial-mesenchymal transition in cancer cells. J Cell Physiol 2018; 233:4443-4457. [PMID: 29194618 DOI: 10.1002/jcp.26302] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a highly networked cellular process which involves cell transition from the immotile epithelial to the motile mesenchymal phenotype, whereby cells lose their cell-cell adhesion and cell polarity. This important process is one of the underlying mechanisms for enabling invasion and metastasis of cancer cells which is considered as malignant phase of tumor progression. However, the molecular mechanisms of this process are not fully clarified. It is reported that Sirtuin1 (SIRT1), a NAD+ dependent class III histone deacetylase is associated with tumor metastasis through positive regulation of EMT in several types of cancers. Recent studies confirmed that up and down regulation of SIRT1 expression remarkably change the migration ability of different cancer cells in vitro and tumor metastasis in vivo. Also, according to this fact that carcinomas as the main human solid tumors, originate from different epithelial cell types, SIRT1 role in EMT has received a great attention due to its potential role in tumor development and metastasis. Therefore, SIRT1 has been proposed as a key regulator of cancer metastasis by promoting EMT, although little is known about the cleared effect of SIRT1 in this transition. Our aim in this review is to explain in more detail the role of SIRT1 in various signaling pathways related to carcinogenesis, with the focus on the promoting role of SIRT1 in EMT as a potential therapeutic target to control EMT and to prevent cancer progression.
Collapse
Affiliation(s)
- Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Bayat
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Zhang M, Wang F, Zhang X. miRNA-627 inhibits cell proliferation and cell migration, promotes cell apoptosis in prostate cancer cells through upregulating MAP3K1, PTPRK and SRA1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:255-261. [PMID: 31938108 PMCID: PMC6957944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/03/2017] [Indexed: 06/10/2023]
Abstract
OBJECTIVE miRNAs, altered expression manner in prostate cancer, have involved in cancer development by regulating proliferation, differentiation, invasion, metabolism and apoptosis. Recently, it has been found that miRNA-627 might mediate colorectal cancer cells as a tumor-suppressor. However, its role on prostate cancer cells remains unknown. METHODS Following transfection with miRNA-627, miRNA-627 expression, cell proliferation, cell cycle, cell apoptosis, migration assay, and real-time PCR analysis were performed in prostate cancer cells. RESULTS It was found that miRNA-627 inhibited cell proliferation, retarded cell cycle and cell migration in prostate cancer cells. Additionally, miRNA-627 promoted cell apoptosis and upregulated the mRNA levels of MAP3K1, PTPRK and SRA1. CONCLUSION Collectively, miRNA-627 interrupts prostate cancer development as suppressing cell proliferation, migration and promoting cell apoptosis and tumor suppressor genes expression, which might provide promising therapeutic effect in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mingbin Zhang
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan, China
- Department of Urology, Affiliated Union Hospital of Fujian Medical UniversityFuzhou, China
| | - Feng Wang
- Department of Orthopedics, Affiliated Union Hospital of Fujian Medical UniversityFuzhou, China
| | - Xiaobin Zhang
- Department of Urology, Renmin Hospital of Wuhan UniversityWuhan, China
| |
Collapse
|