1
|
Eraky AM. Non-coding RNAs as Genetic Biomarkers for the Diagnosis, Prognosis, Radiosensitivity, and Histopathologic Grade of Meningioma. Cureus 2023; 15:e34593. [PMID: 36883085 PMCID: PMC9985895 DOI: 10.7759/cureus.34593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Meningioma is considered the most common primary benign brain tumor. It originates from the arachnoid cells of the leptomeninges surrounding the brain. The mainstay treatment of meningiomas is microsurgical resection. Meningioma prognosis depends on tumor grade, location, and patient age. Recently, using non-coding RNA as a prognostic and diagnostic biomarker for many tumors became a trend. Herein, we demonstrate the importance of non-coding RNAs, including microRNAs and lncRNAs in meningioma and their potential role in meningioma's early diagnosis, prognosis, histological grade, and radiosensitivity. In this review, many microRNAs were found to be upregulated in radioresistant meningioma cells such as microRNA-221, microRNA-222, microRNA-4286, microRNA-4695-5p, microRNA-6732-5p, microRNA-6855-5p, microRNA-7977, microRNA-6765-3p, and microRNA-6787-5p. Moreover, there are many microRNAs downregulated in radioresistant meningioma cells such as microRNA-1275, microRNA-30c-1-3p, microRNA-4449, microRNA-4539, microRNA-4684-3p, microRNA-6129, and microRNA-6891-5p. Also, we highlight the possible use of non-coding RNAs as serum non-invasive biomarkers and their potential role as therapeutic targets to treat high-grade meningiomas. Recent studies show that microRNA-497, microRNA-195, microRNA-18a, microRNA-197, and microRNA-224 are downregulated in the serum of patients with meningiomas. Additionally, microRNA-106a-5p, microRNA-219-5p, microRNA-375, and microRNA-409-3p are found to be upregulated in the serum of patients with meningioma. We also found that there are many deregulated microRNAs in meningioma cells that can be used as potential biomarkers for meningioma diagnosis, prognosis, and histopathologic grade, such as microRNA-17-5p, microRNA-199a, microRNA-190a, microRNA-186-5p, microRNA155-5p, microRNA-22-3p, microRNA-24-3p, microRNA-26-5p, microRNA-27a-3p, microRNA-27b-3p, microRNA-96-5p, microRNA-146a-5p, microRNA-29c-3p, microRNA-219-5p, microRNA-335, microRNA-200a, microRNA-21, microRNA-107, microRNA-224, microRNA-195, microRNA-34a-3p, and microRNA-let-7d. Of interest, we found fewer studies discussing deregulated long non-coding RNAs (lncRNAs) in meningioma cells. LncRNAs work as competitive endogenous RNA (ceRNA) by binding to oncogenic or anti-oncogenic microRNAs. We found that lncRNA- NUP210, lncRNA-SPIRE2, lncRNA-SLC7A1, lncRNA-DMTN, lncRNA-LINC00702, and lncRNA-LINC00460 are upregulated in meningioma cells. In contrast, lncRNA-MALAT1 was found to be downregulated in meningioma cells.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurological Surgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
2
|
Peng W, Wu P, Yuan M, Yuan B, Zhu L, Zhou J, Li Q. Potential Molecular Mechanisms of Recurrent and Progressive Meningiomas: A Review of the Latest Literature. Front Oncol 2022; 12:850463. [PMID: 35712491 PMCID: PMC9196588 DOI: 10.3389/fonc.2022.850463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Meningiomas, the most frequent primary intracranial tumors of the central nervous system in adults, originate from the meninges and meningeal spaces. Surgical resection and adjuvant radiation are considered the preferred treatment options. Although most meningiomas are benign and slow-growing, some patients suffer from tumor recurrence and disease progression, eventually resulting in poorer clinical outcomes, including malignant transformation and death. It is thus crucial to identify these "high-risk" tumors early; this requires an in-depth understanding of the molecular and genetic alterations, thereby providing a theoretical foundation for establishing personalized and precise treatment in the future. Here, we review the most up-to-date knowledge of the cellular biological alterations involved in the progression of meningiomas, including cell proliferation, neo-angiogenesis, inhibition of apoptosis, and immunogenicity. Focused genetic alterations, including chromosomal abnormalities and DNA methylation patterns, are summarized and discussed in detail. We also present latest therapeutic targets and clinical trials for meningiomas' treatment. A further understanding of cellular biological and genetic alterations will provide new prospects for the accurate screening and treatment of recurrent and progressive meningiomas.
Collapse
Affiliation(s)
- Wenjie Peng
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghao Yuan
- Department of Neurology, Chongqing Medical University, Chongqing, China
| | - Bo Yuan
- Department of Nephrology, The Dazu District People’s Hospital, Chongqing, China
| | - Lian Zhu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Jiesong Zhou
- Department of Plastic Surgery, Changhai Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Qian Li
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
von Spreckelsen N, Kesseler C, Brokinkel B, Goldbrunner R, Perry A, Mawrin C. Molecular neuropathology of brain-invasive meningiomas. Brain Pathol 2022; 32:e13048. [PMID: 35213084 PMCID: PMC8877755 DOI: 10.1111/bpa.13048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Invasion of brain tissue by meningiomas has been identified as one key factor for meningioma recurrence. The identification of meningioma tumor tissue surrounded by brain tissue in neurosurgical samples has been touted as a criterion for atypical meningioma (CNS WHO grade 2), but is only rarely seen in the absence of other high-grade features, with brain-invasive otherwise benign (BIOB) meningiomas remaining controversial. While post-surgery irradiation therapy might be initiated in brain-invasive meningiomas to prevent recurrences, specific treatment approaches targeting key molecules involved in the invasive process are not established. Here we have compiled the current knowledge about mechanisms supporting brain tissue invasion by meningiomas and summarize preclinical models studying targeted therapies with potential inhibitory effects.
Collapse
Affiliation(s)
- Niklas von Spreckelsen
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
- Department of General NeurosurgeryCenter for NeurosurgeryCologne University HospitalFaculty of Medicine and University HospitalUniversity of CologneGermany
| | - Christoph Kesseler
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
| | | | - Roland Goldbrunner
- Department of General NeurosurgeryCenter for NeurosurgeryCologne University HospitalFaculty of Medicine and University HospitalUniversity of CologneGermany
| | - Arie Perry
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of Neurological SurgeryUCSFSan FranciscoCaliforniaUSA
| | - Christian Mawrin
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
| |
Collapse
|
4
|
Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers (Basel) 2021; 13:cancers13235987. [PMID: 34885097 PMCID: PMC8656547 DOI: 10.3390/cancers13235987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are non-coding transcripts which are involved in the pathogenesis of pituitary gland tumors. LncRNAs that participate in the pathogenesis of pituitary gland tumors mainly serve as sponges for miRNAs. CLRN1-AS1/miR-217, XIST/miR-424-5p, H19/miR-93a, LINC00473/miR-502-3p, SNHG7/miR-449a, MEG8/miR-454-3p, MEG3/miR-23b-3p, MEG3/miR-376B-3P, SNHG6/miR-944, PCAT6/miR-139-3p, lncRNA-m433s1/miR-433, TUG1/miR-187-3p, SNHG1/miR-187-3p, SNHG1/miR-302, SNHG1/miR-372, SNHG1/miR-373, and SNHG1/miR-520 are identified lncRNA/miRNA pairs that are involved in this process. Hsa_circ_0001368 and circOMA1 are two examples of circRNAs that contribute to the pathogenesis of pituitary gland tumors. Meanwhile, SNHG1, LINC00702, LINC00460, and MEG3 have been found to partake in the pathogenesis of meningioma. In the current review, we describe the role of non-coding RNAs in two types of brain tumors, i.e., pituitary tumors and meningioma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
- Correspondence: (M.T.); (G.S.)
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran
- Correspondence: (M.T.); (G.S.)
| |
Collapse
|
5
|
Shaw P, Senthilnathan R, Krishnan S, Suresh D, Shetty S, Muthukaliannan GK, Mani RR, Sivanandy P, Chandramoorthy HCK, Gupta MM, Baxi S, Jayaraj R. A Clinical Update on the Prognostic Effect of microRNA Biomarkers for Survival Outcome in Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13174369. [PMID: 34503179 PMCID: PMC8431423 DOI: 10.3390/cancers13174369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Current estimates by GLOBOCAN now incorporate NPC as a malignancy discrete from other head and neck malignancies among the 36 disease locales assessed. Based on the latest report, the global cancer burden is estimated to have risen to 19.3 million new cases, and 9.6 million malignancies were recorded in 2020 throughout the world. The study has clinical implications and could improve treatment decision-making and post-treatment care. The study could also motivate future clinical research and development in the arena of NPC prognostic biomarkers.ve men and one in every six women develops cancer during their lifetime, and one out of eight men and one in every 11 women progresses to chronic stage. The study has clinical implications and could improve treatment decision-making and post-treatment care. The study could also motivate future clinical research and development in the arena of NPC prognostic biomarkers. Abstract Background: Nasopharyngeal carcinoma (NPC), a relatively uncommon malignancy in the Western world, is highly prevalent in Southeast Asia where the treatment outcomes are poor. Despite recent improvements in diagnosis and treatment locoregional control, distant metastasis and chemoresistance continue to be a significant cause of mortality. Identification of a reliable and comprehensive prognostic biomarker is highly desirable. The potential relevance of microRNAs (miRNAs) as prognostic markers in NPC is assessed in this systematic review and meta-analysis. Methods: A systematic review was performed using the PubMed and Science Direct databases. The search was limited to search results between 2018 and 2020 with the keywords and search strings developed as per the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. The recovered articles were carefully screened based on the selection criteria. In the meta-analysis study, high and low expression levels of miRNAs were measured using the hazard ratio (HR) and 95 percent confidence interval (CI) for patients’ survival outcomes. Egger’s bias indicator test and funnel plot symmetry were used to assess the risk of bias. Results: Amongst the 25 studies, 13 fulfilled the conditions of inclusion in this meta-analysis. The researchers further delved into the 21 miRNA expression levels from 3015 NPC patients to ascertain a link between miRNA’s predictive role and survival outcomes. The majority of the articles retrieved during this study were from China, with two studies from Canada and Malaysia. The overall pooled effect size estimation (HR) for dysregulated miRNAs was 1.590 (95% CI: 1.253–2.017), displaying that miRNA marker expression increased the risk of mortality in NPC patients by 59%. Conclusions: This meta-analysis is novel and looks at the prognostic significance of miRNAs as biomarkers in NPC patients using a continuous version pooled meta-analysis. Although our findings are ambiguous, they do show that greater miRNA expression in NPC may be associated with a lower overall survival rate. To acquire clear conclusions, more prospective studies with large cohorts are required to determine the clinical utility of miRNAs as prognostic biomarkers.
Collapse
Affiliation(s)
- Peter Shaw
- Department of Artificial Intelligence, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, China;
| | - Raghul Senthilnathan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India; (R.S.); (G.K.M.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Deepa Suresh
- Division of Endocrinology, Department of Internal Medicine, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Sameep Shetty
- Department of Oral and Maxillofacial Surgery, Manipal College of Dental Sciences, Manipal Academy of Higher Education, A Constituent of MAHE, Manipal 576104, India;
| | | | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Palanisamy Sivanandy
- Department of Pharmacy Practice, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | | | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago;
| | - Siddhartha Baxi
- John Flynn Hospital, 42 Inland Drive, Tugun, QLD 4224, Australia;
| | - Rama Jayaraj
- Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
- Correspondence:
| |
Collapse
|
6
|
Alkafaji HA, Raji A, Rahman HS, Zekiy AO, Adili A, Jalili M, Hojjatipour T, Cid‐Arregui A, Shomali N, Tarzi S, Tamjidifar R, Heshmati R, Marofi F, Akbari M, Hasanzadeh A, Deljavanghodrati M, Jarahian M, Sandoghchian Shotorbani S. Up-regulation of KISS1 as a novel target of Let-7i in melanoma serves as a potential suppressor of migration and proliferation in vitro. J Cell Mol Med 2021; 25:6864-6873. [PMID: 34096173 PMCID: PMC8278109 DOI: 10.1111/jcmm.16695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is a kind of skin cancer that is begun by the alteration of melanocytes. miRNAs are small non-coding RNA molecules that regulate a variety of biological processes. KISS1, the metastasis-suppressor gene, encodes kisspeptins which inhibits migration and proliferation of cancers. This study was aimed to determine the role of Let-7i and KISS1 in melanoma cell migration and proliferation. At first, the expression of Let-7i and KISS1 was determined in patients with melanoma. In the in vitro part of the study, Let-7i mimics were transfected and the impact of its restoration on target gene expression, proliferation, migration and apoptosis of SK-MEL-3 melanoma cell line was assessed by real-time PCR and Western blotting, MTT assay, wound-healing assay and flow cytometry, respectively. Besides, KISS1 inhibitor siRNA alone and along with Let-7i was transfected to determine their probable correlation. The results revealed that either Let-7i or KISS1 were down-regulated in patients with melanoma. The results obtained from the in vitro part of the study revealed that restoration of Let-7i reduced the expression of metastasis- and proliferation-related target genes. Moreover, it was revealed that up-regulation of Let-7i attenuated migration and proliferation capability of SK-MEL-3 cells. Besides, it was demonstrated that Let-7i restoration induced apoptosis in melanoma cells. More importantly, the KISS1 inhibitor caused a prominent cell migration and proliferation, attenuated by Let-7i re-expression. To sum up, the present study revealed the impressive role of Let-7i restoration along with its correlation with KISS1 on melanoma carcinogenicity which may be applicable in future in vivo studies.
Collapse
Affiliation(s)
| | - Ahmed Raji
- College of medicineUniversity of BabylonBabylonIraq
| | - Heshu S. Rahman
- Department of PhysiologyCollege of MedicineUniversity of SuleimanyahSuleimanyahIraq
| | - Angelina O. Zekiy
- Sechenov First Moscow State Medical UniversityMoscowRussian Federation
| | - Ali Adili
- Department of OncologyTabriz University of Medical SciencesTabrizIran
| | | | - Tahereh Hojjatipour
- Department of Hematology and Blood TransfusionStudents Research CentreSchool of Allied MedicineTehran University of Medical SciencesTehranIran
| | - Angel Cid‐Arregui
- Targeted Tumor Vaccines UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Navid Shomali
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Saeed Tarzi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Rozita Tamjidifar
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ramin Heshmati
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Faroogh Marofi
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Morteza Akbari
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Ali Hasanzadeh
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | | | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401)German Cancer Research CenterHeidelbergGermany
| | - Siamak Sandoghchian Shotorbani
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
7
|
Shao Z, Liu L, Zheng Y, Tu S, Pan Y, Yan S, Wei Q, Shao A, Zhang J. Molecular Mechanism and Approach in Progression of Meningioma. Front Oncol 2020; 10:538845. [PMID: 33042832 PMCID: PMC7518150 DOI: 10.3389/fonc.2020.538845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Meningioma is the most common tumor of the central nervous system, most of which is benign. Even after complete resection, a high rate of recurrence of meningioma is observed. From in-depth study of its pathogenesis, it has been found that a number of chromosomal variations and abnormal molecular signals are closely related to the occurrence and development of malignancy in meningioma, which may provide the theoretical basis and potential direction for accurate and targeted treatment. We have reviewed advances in chromosomal variations and molecular mechanisms involved in the progression of meningioma, and have highlighted the association with malignant biological behavior including cell proliferation, angiogenesis, increased invasiveness, and inhibition of apoptosis. In addition, the chemotherapy of meningioma is summarized and discussed.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Non-coding RNAs in drug resistance of head and neck cancers: A review. Biomed Pharmacother 2020; 127:110231. [PMID: 32428836 DOI: 10.1016/j.biopha.2020.110231] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC), which includes epithelial malignancies of the upper aerodigestive tract (oral cavity, oropharynx, pharynx, hypopharynx, larynx, and thyroid), are slowly but consistently increasing, while the overall survival rate remains unsatisfactory. Because of the multifunctional anatomical intricacies of the head and neck, disease progression and therapy-related side effects often severely affect the patient's appearance and self-image, as well as their ability to breathe, speak, and swallow. Patients with HNC require a multidisciplinary approach involving surgery, radiation therapy, and chemotherapeutics. Chemotherapy is an important part of the comprehensive treatment of tumors, especially advanced HNC, but drug resistance is the main cause of poor clinical efficacy. The most important determinant of this phenomenon is still largely unknown. Recent studies have shown that non-coding RNAs have a crucial role in HNC drug resistance. In addition, they can serve as biomarkers in the diagnosis, treatment, and prognosis of HNCs. In this review, we summarize the relationship between non-coding RNAs and drug resistance of HNC, and discuss their potential clinical application in overcoming HNC chemoresistance.
Collapse
|
9
|
Yang ZY, Wang Y, Liu Q, Wu M. microRNA cluster MC-let-7a-1~let-7d promotes autophagy and apoptosis of glioma cells by down-regulating STAT3. CNS Neurosci Ther 2019; 26:319-331. [PMID: 31868319 PMCID: PMC7052808 DOI: 10.1111/cns.13273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Accumulating evidence has highlighted the correlation between microRNAs (miRNAs) and the progression of glioma. However, the role of miR cluster MC‐let‐7a‐1 ~ let‐7d in glioma remains elusive. Thus, the current study aimed to investigate the effect of miR cluster MC‐let‐7a‐1 ~ let‐7d on glioma progression. Methods and Results Microarray data analysis provided data indicating the involvement of miR cluster MC‐let‐7a‐1 ~ let‐7d in glioma via STAT3. The expression of let‐7a‐1, let‐7d, let‐7f‐1, and miR cluster MC‐let‐7a‐1 ~ let‐7d was diminished in the glioma tissues and the cell lines. Additionally, our results revealed that STAT3 was a target gene of let‐7d, let‐7a‐1, and let‐7f‐1, which was further verified by the dual‐luciferase reporter gene assay. Moreover, STAT3 expression was negatively mediated by let‐7a‐1, let‐7d, and let‐7f‐1. Up‐regulated miR cluster MC‐let‐7a‐1 ~ let‐7d or silenced STAT3 suppressed cell proliferation but accelerated cell apoptosis and autophagy. Moreover, restrained tumor growth was identified in the nude mice treated with miR cluster MC‐let‐7a‐1 ~ let‐7d mimics or STAT3 siRNA. Conclusion Taken together, the miR cluster MC‐let‐7a‐1 ~ let‐7d promotes glioma cell autophagy and apoptosis by repressing STAT3. The current study highlights the potential of the miR cluster MC‐let‐7a‐1 ~ let‐7d as biomarkers and promising treatment strategies for glioma.
Collapse
Affiliation(s)
- Zhuan-Yi Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Medical School of Central South University & Xiangya Hospital Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Ming Wu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
10
|
Xu ST, Ma YC, Wang CH, Xu Y, Gu GJ. Prognostic and clinicopathologic significance of AEG-1/MTDH and E-cadherin expression in human gallbladder carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:6025-6031. [PMID: 31949691 PMCID: PMC6963071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
Astrocyte elevated gene-1 (AEG-1) and E-cadherin are associated with tumorigenesis and progression. The aim of this study is to investigate the expression of AEG-1 and E-cadherin in human gallbladder cancer (GBC) and explore their clinical and pathological significance. The expression of AEG-1 and E-cadherin protein were detected in 71 cases of human GBC and 22 cases of tumor-adjacent tissue by the immunohistochemical method. Our results demonstrate that the positive expression (high expression) rate of AEG-1 was 62.0% in human GBC which was higher than that in tumor-adjacent tissues (13.6%), P<0.001. The positive expression of AEG-1 protein was correlated with tumor TNM classification, histologic grade, and lymph node metastasis (P=0.037, P=0.033 and P=0.020, respectively). The positive expression rate of E-cadherin was 40.8% in GBC, which was lower than that in tumor-adjacent tissues (77.3%), P=0.003. Negative expression (Low expression) of E-Cadherin was significantly related with tumor TNM classification, histologic grade and lymphatic metastasis (P=0.028, P=0.003 and P=0.040, respectively). The expression of AEG-1 was negatively correlated with the expression of E-Cadherin (r=0.530, P<0.001). The log-rank test statistical analysis suggested that patients with positive expression of AEG-1 or negative expression of E-Cadherin protein had shorter overall survival time. Cox multivariate analysis showed that tumor TNM classification, histologic grade and lymphatic metastasis, AEG-1 and E-cadherin expression were independent factors for prognosis of GBC (P=0.013, P=0.019, P=0.001, P=0.011 and P=0.025 respectively). In conclusion, positive expression of AEG-1 and negative expression of E-Cadherin are markedly correlated with tumor TNM classification, histologic grade and lymphatic metastasis. The expression of AEG-1 was negatively correlated with the expression of E-Cadherin. Cox multivariate analysis showed that tumor TNM classification, histologic grade and lymphatic metastasis, positive expression of AEG-1 and negative expression of E-Cadherin were risk factors for prognosis of GBC. Detection of AEG-1 and E-Cadherin may be helpful to evaluate prognosis and infiltrative capability of gallbladder carcinoma.
Collapse
Affiliation(s)
- Song-Tao Xu
- Department of Clinical, Luohe Medical CollegeLuohe, Henan, PR China
- Innovative Science and Technological Team of Tumor Occurrence and Prevention in Henan ProvinceLuohe , Henan Province, PR China
| | - Yong-Chao Ma
- Department of Basic Medical Science, Luohe Medical CollegeLuohe, Henan, PR China
| | - Cai-Hong Wang
- Department of Medical Imaging, Taicang Affiliated Hospital of Soochow UniversityTaicang, Jiangsu, PR China
| | - Yue Xu
- Department of Neurosurgery, Taicang Affiliated Hospital of Soochow UniversityTaicang, Jiangsu, PR China
| | - Guo-Jian Gu
- Department of Pathology, Taicang Affiliated Hospital of Soochow UniversityTaicang, Jiangsu, PR China
- Department of Pathology, The First People’s Hospital of TaicangTaicang, Jiangsu, PR China
| |
Collapse
|