1
|
Suo S, Fang C, Liu W, Liu Q, Zhang Z, Chang J, Li G. FOXM1 c.1205 C > A mutation is associated with unilateral Moyamoya disease and inhibits angiogenesis in human brain endothelial cells. Hum Genet 2024; 143:939-953. [PMID: 38969938 DOI: 10.1007/s00439-024-02685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Unilateral moyamoya disease (MMD) represents a distinct subtype characterised by occlusive changes in the circle of Willis and abnormal vascular network formation. However, the aetiology and pathogenesis of unilateral MMD remain unclear. In this study, genetic screening of a family with unilateral MMD using whole-genome sequencing helped identify the c.1205 C > A variant of FOXM1, which encodes the transcription factor FOXM1 and plays a crucial role in angiogenesis and cell proliferation, as a susceptibility gene mutation. We demonstrated that this mutation significantly attenuated the proangiogenic effects of FOXM1 in human brain endothelial cells, leading to reduced proliferation, migration, and tube formation. Furthermore, FOXM1 c.1205 C > A results in increased apoptosis of human brain endothelial cells, mediated by the downregulation of the transcription of the apoptosis-inhibiting protein BCL2. These results suggest a potential role for the FOXM1 c.1205 C > A mutation in the pathogenesis of unilateral MMD and may contribute to the understanding and treatment of this condition.
Collapse
Affiliation(s)
- Sen Suo
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Wenting Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qingan Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
2
|
Wu HY, Luo LF, Wei F, Jiang HM. Comprehensive clinicopathological significance and putative transcriptional mechanisms of Forkhead box M1 factor in hepatocellular carcinoma. World J Surg Oncol 2023; 21:366. [PMID: 38001498 PMCID: PMC10675979 DOI: 10.1186/s12957-023-03250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND The Forkhead box M1 factor (FOXM1) is a crucial activator for cancer cell proliferation. While FOXM1 has been shown to promote hepatocellular carcinoma (HCC) progression, its transcriptional mechanisms remain incompletely understood. METHODS We performed an in-house tissue microarray on 313 HCC and 37 non-HCC tissue samples, followed by immunohistochemical staining. Gene chips and high throughput sequencing data were used to assess FOXM1 expression and prognosis. To identify candidate targets of FOXM1, we comprehensively reanalyzed 41 chromatin immunoprecipitation followed by sequencing (ChIP-seq) data sets. We predicted FOXM1 transcriptional targets in HCC by intersecting candidate FOXM1 targets with HCC overexpressed genes and FOXM1 correlation genes. Enrichment analysis was employed to address the potential mechanisms of FOXM1 underlying HCC. Finally, single-cell RNA sequencing analysis was performed to confirm the transcriptional activity of FOXM1 on its predicted targets. RESULTS This study, based on 4235 HCC tissue samples and 3461 non-HCC tissue samples, confirmed the upregulation of FOXM1 in HCC at mRNA and protein levels (standardized mean difference = 1.70 [1.42, 1.98]), making it the largest multi-centered study to do so. Among HCC patients, FOXM1 was increased in Asian and advanced subgroups, and high expression of FOXM1 had a strong ability to differentiate HCC tissue from non-HCC tissue (area under the curve = 0.94, sensitivity = 88.72%, specificity = 87.24%). FOXM1 was also shown to be an independent exposure risk factor for HCC, with a pooled hazard ratio of 2.00 [1.77, 2.26]. The predicted transcriptional targets of FOXM1 in HCC were predominantly enriched in nuclear division, chromosomal region, and catalytic activity acting on DNA. A gene cluster encoding nine transcriptional factors was predicted to be positively regulated by FOXM1, promoting the cell cycle signaling pathway in HCC. Finally, the transcriptional activity of FOXM1 and its targets was supported by single-cell analysis of HCC cells. CONCLUSIONS This study not only confirmed the upregulation of FOXM1 in HCC but also identified it as an independent risk factor. Moreover, our findings enriched our understanding of the complex transcriptional mechanisms underlying HCC pathogenesis, with FOXM1 potentially promoting HCC progression by activating other transcription factors within the cell cycle pathway.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Medical Experimental Center, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Feng Luo
- Department of Pathology, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fang Wei
- Department of Pathology, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong-Mian Jiang
- Department of Pathology, The First People's Hospital of Nanning, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
3
|
Federico P, Giunta EF, Tufo A, Tovoli F, Petrillo A, Daniele B. Resistance to Antiangiogenic Therapy in Hepatocellular Carcinoma: From Molecular Mechanisms to Clinical Impact. Cancers (Basel) 2022; 14:6245. [PMID: 36551730 PMCID: PMC9776845 DOI: 10.3390/cancers14246245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Antiangiogenic drugs were the only mainstay of advanced hepatocellular carcinoma (HCC) treatment from 2007 to 2017. However, primary or secondary resistance hampered their efficacy. Primary resistance could be due to different molecular and/or genetic characteristics of HCC and their knowledge would clarify the optimal treatment approach in each patient. Several molecular mechanisms responsible for secondary resistance have been discovered over the last few years; they represent potential targets for new specific drugs. In this light, the advent of checkpoint inhibitors (ICIs) has been a new opportunity; however, their use has highlighted other issues: the vascular normalization compared to a vessel pruning to promote the delivery of an active cancer immunotherapy and the development of resistance to immunotherapy which leads to a better selection of patients as candidates for ICIs. Nevertheless, the combination of antiangiogenic therapy plus ICIs represents an intriguing approach with high potential to improve the survival of these patients. Waiting for results from ongoing clinical trials, this review depicts the current knowledge about the resistance to antiangiogenic drugs in HCC. It could also provide updated information to clinicians focusing on the most effective combinations or sequential approaches in this regard, based on molecular mechanisms.
Collapse
Affiliation(s)
- Piera Federico
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Emilio Francesco Giunta
- Department of Precision Medicine, School of Medicine, University of Study of Campania “L. Vanvitelli”, 80131 Naples, Italy
| | - Andrea Tufo
- Surgical Unit, Ospedale del Mare, 80147 Napoli, Italy
| | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | | | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| |
Collapse
|
4
|
Aoki T, Nishida N, Kudo M. Clinical Significance of the Duality of Wnt/β-Catenin Signaling in Human Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14020444. [PMID: 35053606 PMCID: PMC8773595 DOI: 10.3390/cancers14020444] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Combination therapy with immune checkpoint inhibitors (ICIs) and vascular endothelial growth factor inhibitors has been approved as a first-line treatment for unresectable hepatocellular carcinoma (HCC), indicating a critical role of ICIs in the treatment of HCC. However, 20% of patients do not respond effectively to ICIs; mutations in the activation of the Wnt/β-catenin pathway are known to contribute to primary resistance to ICIs. From this point of view, non-invasive detection of Wnt/β-catenin activation should be informative for the management of advanced HCC. Wnt/β-catenin mutations in HCC have a dual aspect, which results in two distinct tumor phenotypes. HCC with minimal vascular invasion, metastasis, and good prognosis is named the “Jekyll phenotype”, while the poorly differentiated HCC subset with frequent vascular invasion and metastasis, cancer stem cell features, and high serum Alpha fetoprotein levels, is named the “Hyde phenotype”. To differentiate these two HCC phenotypes, a combination of the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging and fluoro-2-deoxy-D-glucose-PET/CT may be useful. The former is applicable for the detection of the Jekyll phenotype, as nodules present higher enhancement on the hepatobiliary phase, while the latter is likely to be informative for the detection of the Hyde phenotype by showing an increased glucose uptake.
Collapse
Affiliation(s)
| | - Naoshi Nishida
- Correspondence: ; Tel.: +81-72-366-0221 (ext. 3149); Fax: +81-72-367-2880
| | | |
Collapse
|
5
|
Nandi D, Cheema PS, Singal A, Bharti H, Nag A. Artemisinin Mediates Its Tumor-Suppressive Activity in Hepatocellular Carcinoma Through Targeted Inhibition of FoxM1. Front Oncol 2021; 11:751271. [PMID: 34900697 PMCID: PMC8652299 DOI: 10.3389/fonc.2021.751271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
The aberrant up-regulation of the oncogenic transcription factor Forkhead box M1 (FoxM1) is associated with tumor development, progression and metastasis in a myriad of carcinomas, thus establishing it as an attractive target for anticancer drug development. FoxM1 overexpression in hepatocellular carcinoma is reflective of tumor aggressiveness and recurrence, poor prognosis and low survival in patients. In our study, we have identified the antimalarial natural product, Artemisinin, to efficiently curb FoxM1 expression and activity in hepatic cancer cells, thereby exhibiting potential anticancer efficacy. Here, we demonstrated that Artemisinin considerably mitigates FoxM1 transcriptional activity by disrupting its interaction with the promoter region of its downstream targets, thereby suppressing the expression of numerous oncogenic drivers. Augmented level of FoxM1 is implicated in drug resistance of cancer cells, including hepatic tumor cells. Notably, FoxM1 overexpression rendered HCC cells poorly responsive to Artemisinin-mediated cytotoxicity while FoxM1 depletion in resistant liver cancer cells sensitized them to Artemisinin treatment, manifested in lower proliferative and growth index, drop in invasive potential and repressed expression of EMT markers with a concomitantly increased apoptosis. Moreover, Artemisinin, when used in combination with Thiostrepton, an established FoxM1 inhibitor, markedly reduced anchorage-independent growth and displayed more pronounced death in liver cancer cells. We found this effect to be evident even in the resistant HCC cells, thereby putting forth a novel combination therapy for resistant cancer patients. Altogether, our findings provide insight into the pivotal involvement of FoxM1 in the tumor suppressive activities of Artemisinin and shed light on the potential application of Artemisinin for improved therapeutic response, especially in resistant hepatic malignancies. Considering that Artemisinin compounds are in current clinical use with favorable safety profiles, the results from our study will potentiate its utility in juxtaposition with established FoxM1 inhibitors, promoting maximal therapeutic efficacy with minimal adverse effects in liver cancer patients.
Collapse
Affiliation(s)
| | | | - Aakriti Singal
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Hina Bharti
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi, New Delhi, India
| |
Collapse
|
6
|
Su WL, Chuang SC, Wang YC, Chen LA, Huang JW, Chang WT, Wang SN, Lee KT, Lin CS, Kuo KK. Expression of FOXM1 and Aurora-A predicts prognosis and sorafenib efficacy in patients with hepatocellular carcinoma. Cancer Biomark 2021; 28:341-350. [PMID: 32390596 PMCID: PMC7458516 DOI: 10.3233/cbm-190507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND: Effective prognostic biomarkers and powerful target-therapeutic drugs are needed for improving the treatment of Hepatocellular carcinoma (HCC). OBJECTIVE: This study aimed to evaluate the expression of FOXM1 and Aurora-A and their prognostic value in HCC. METHODS: We determined the differentially expressed genes signature in HCC using the Gene Set Enrichment Analysis (GSEA), and then evaluated the expression of FOXM1 and Aurora-A in TCGA and KMUH cohort. Associations between co-expression of FOXM1 and Aurora-A and clinical variables were calculated. Overall survival (OS) and recurrence-free survival (RFS) were estimated with different FOXM1 and Aurora-A expression status. RESULTS: FOXM1-related gene sets were mostly associated with cell cycle regulation in HCC tissues. We found a positive correlation between the expression of FOXM1 and Aurora-A. Overexpression of FOXM1 and Aurora-A was associated with larger tumor size, advanced stage, higher grade, and double-positive for HBV and HCV. The coordinated overexpression of FOXM1 and Aurora-A was the most significant independent prognostic factor for OS and RFS. Furthermore, the concomitant high expression of FOXM1 and Aurora-A predicted the worst OS of sorafenib-treated patients with HCC. CONCLUSIONS: The co-expression of FOXM1 and Aurora-A could be a reliable biomarker to predict the sorafenib response and prognosis of HCC patients.
Collapse
Affiliation(s)
- Wen-Lung Su
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Shih-Chang Chuang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Chu Wang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-An Chen
- Department of Surgery, Health and Welfare Ministry Pingtung Hospital, Pingtung, Taiwan
| | - Jian-Wei Huang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shen-Nien Wang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - King-Teh Lee
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kung-Kai Kuo
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
7
|
A genomic-clinicopathologic nomogram for predicting overall survival of hepatocellular carcinoma. BMC Cancer 2020; 20:1176. [PMID: 33261584 PMCID: PMC7709450 DOI: 10.1186/s12885-020-07688-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common digestive tumor with great heterogeneity and different overall survival (OS) time, causing stern problems for selecting optimal treatment. Here we aim to establish a nomogram to predict the OS in HCC patients. Methods International Cancer Genome Consortium (ICGC) database was searched for the target information in our study. Lasso regression, univariate and multivariate cox analysis were applied during the analysis process. And a nomogram integrating model scoring and clinical characteristic was drawn. Results Six mRNAs were screened out by Lasso regression to make a model for predicting the OS of HCC patients. And this model was proved to be an independent prognostic model predicting OS in HCC patients. The area under the ROC curve (AUC) of this model was 0.803. TCGA database validated the significant value of this 6-mRNA model. Eventually a nomogram including 6-mRNA risk score, gender, age, tumor stage and prior malignancy was set up to predict the OS in HCC patients. Conclusions We established an independent prognostic model of predicting OS for 1–3 years in HCC patients, which is available to all populations. And we developed a nomogram on the basis of this model, which could be of great help to precisely individual treatment measures.
Collapse
|
8
|
Higurashi M, Maruyama T, Nogami Y, Ishikawa F, Yoshida Y, Mori K, Fujita KI, Shibanuma M. High expression of FOXM1 critical for sustaining cell proliferation in mitochondrial DNA-less liver cancer cells. Exp Cell Res 2020; 389:111889. [PMID: 32032602 DOI: 10.1016/j.yexcr.2020.111889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
The copy number of mitochondrial DNA (mtDNA) is decreased in most cancer types, including hepatocellular carcinoma (HCC), compared to normal counterparts. However, a decrease in mtDNA usually leads to defects in cell proliferation, which contradicts the robustness of cancer cell proliferation. In this study, we found that four out of seven HCC cell lines were of the mtDNA-less type. Interestingly, FOXM1, a member of the FOX transcription factor family, was highly expressed in a subset of them with proliferative potential maintained. B-MYB, a partner of FOXM1, was also expressed in the same cell lines. RNAi-mediated experiments demonstrated that when FOXM1/B-MYB was silenced in the cell lines, cell cycle-related genes were downregulated, while p21Cip1 was induced with senescence-associated β-galactosidase, resulting in G1/S cell cycle arrest. These results suggest that high expression of FOXM1/B-MYB is critical for sustaining cell proliferation in mtDNA-less cells. In addition, we found that high expression of FOXM1 was mediated by the deubiquitinating enzyme, OTUB1, in one cell line. Thus, interference with FOXM1/B-MYB expression, such as through OTUB1 inhibition, may induce a dormant state of senescence-like proliferation arrest in mtDNA-less cancer cells. This finding may be utilized for the development of precision medicine for relevant cancers.
Collapse
Affiliation(s)
- Masato Higurashi
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Tsuyoshi Maruyama
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Yusuke Nogami
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Fumihiro Ishikawa
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Yukiko Yoshida
- Department of Advanced Science for Biomolecules, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Kazunori Mori
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Ken-Ichi Fujita
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan
| | - Motoko Shibanuma
- Division of Cancer Cell Biology, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, 142-8555, Japan.
| |
Collapse
|
9
|
Zhu H, Qu Y. Expression levels of ARHI and Beclin1 in thyroid cancer and their relationship with clinical pathology and prognosis. Oncol Lett 2019; 19:1241-1246. [PMID: 31966053 PMCID: PMC6956424 DOI: 10.3892/ol.2019.11223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Expression levels of autophagy-related genes ARHI and Beclin1 in thyroid cancer and their relationship with clinical pathology and prognosis were investigated. The expression levels of ARHI and Beclin1 proteins in 80 cases of thyroid cancer and adjacent tissues were detected by western blot analysis. According to the expression levels of ARHI and Beclin1, low- and high-expression groups were determined and the relationship of the expression levels with the pathological parameters and prognosis in thyroid cancer was compared between the two groups. The correlation between the ARHI and Beclin1 protein expression level was analyzed by Pearsons correlation analysis. The levels of ARHI and Beclin1 proteins in thyroid cancer tissues were significantly lower than those in adjacent tissues (P<0.05). There was a significant difference in the expression levels of ARHI and Beclin1 in terms of pathological stage and differentiation degree of cancer tissues (P<0.001); however, there was no significant difference in the expression levels of ARHI and Beclin1 for different types of cancer tissues (P>0 05). There was a positive correlation between the expression levels of Beclin1 and ARHI (r=0.5187, P<0.001). The 3-year survival rates of patients with low-expression level of ARHI and Beclin1 proteins were significantly lower than those of patients with high expression (P<0.05). In conclusion, the expression levels of Beclin1 and ARHI were low in thyroid cancer, and were significantly associated with the pathological stage, differentiation degree and prognosis in thyroid cancer. Beclin1 and ARHI can be used as predictors for the development and prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Houwei Zhu
- Department of Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Yanqing Qu
- Department of Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
10
|
Qin H, Wen DY, Que Q, Zhou CY, Wang XD, Peng YT, He Y, Yang H, Liao BM. Reduced expression of microRNA-139-5p in hepatocellular carcinoma results in a poor outcome: An exploration the roles of microRNA-139-5p in tumorigenesis, advancement and prognosis at the molecular biological level using an integrated meta-analysis and bioinformatic investigation. Oncol Lett 2019; 18:6704-6724. [PMID: 31807180 PMCID: PMC6876336 DOI: 10.3892/ol.2019.11031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is generally considered one of the most common gastrointestinal malignant tumors, characterized by high invasiveness and metastatic rate, as well as insidious onset. A relationship between carcinogenicity and aberrant microRNA-139-5p (miR-139-5p) expression has been identified in multiple tumors while the specific molecular mechanisms of miR-139-5p in HCC have not yet been thoroughly elucidated. A meta-analysis of available data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus, ArrayExpress and Oncomine databases, as well as the published literature, was comprehensively conducted with the aim of examining the impact of miR-139-5p expression on HCC. Additionally, predicted downstream target genes were confirmed using a series of bioinformatics tools. Moreover, a correlative biological analysis was performed to ascertain the precise function of miR-139-5p in HCC. The results revealed that the expression of miR-139-5p was noticeably lower in HCC compared with non-tumor liver tissues according to the pooled standard mean difference, which was -0.84 [95% confidence interval (CI): -1.36 to -0.32; P<0.001]. Furthermore, associations were detected between miR-139-5p expression and certain clinicopathological characteristics of TCGA samples, including tumor grade, pathological stage and T stage. Moreover, the pooled hazard ratio (HR) for overall survival (HR=1.37; 95% CI: 1.07-1.76; P=0.001) indicated that decreased miR-139-5p expression was a risk factor for adverse outcomes. Additionally, 382 intersecting genes regulated by miR-139-5p were obtained and assembled in signaling pathways, including 'transcription factor activity, sequence-specific DNA binding', 'pathways in cancer' and 'Ras signaling pathway'. Notably, four targeted genes that were focused in 'pathways in cancer' were identified as hub genes and immunohistochemical staining of the proteins encoded by these four hub genes in liver tissues, explored using the Human Protein Atlas database, confirmed their expression patterns in HCC and normal liver tissues Findings of the present study suggest that reduced miR-139-5p expression is capable of accelerating tumor progression and is associated with a poor clinical outcome by modulating the expression of downstream target genes involved in tumor-associated signaling pathways.
Collapse
Affiliation(s)
- Hui Qin
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiao Que
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chuan-Yang Zhou
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Dong Wang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Ting Peng
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun He
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bo-Ming Liao
- Department of Internal Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
11
|
XTP8 promotes hepatocellular carcinoma growth by forming a positive feedback loop with FOXM1 oncogene. Biochem Biophys Res Commun 2019; 515:455-461. [PMID: 31164201 DOI: 10.1016/j.bbrc.2019.05.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer in the world and the main cause of cancer death. Chronic hepatitis B virus (HBV) infection is the major cause of HCC. HBx, as a transactivator, plays an important role in the occurrence and development process of HCC leading by HBV infection. XTP8, related to HBx, however, there are no studies on the function of XTP8 in HCC. In our research, we demonstrated that XTP8 was significantly up-regulated in HCC tissues compared with non-cancerous tissues in Oncomine, TCGA and GEO database. Moreover, Kaplan-Meier Plotter analysis indicated that patients with higher XTP8 expression had significantly lower overall survival. Our immunohistochemical results suggested that XTP8 protein expression in HCC tissues was dramatically higher compared with control normal tissues. In vivo xenograft experiments on nude mice, the overexpression of XTP8 promoted the tumorigenic ability of HepG2 cells. In HepG2 and Huh7 cells, XTP8 upregulated FOXM1 expression to promote cell proliferation and inhibited cell apoptosis. FOXM1 knockdown reduced promoter activity of XTP8 to downregulate XTP8 expression. Thiostrepton, an inhibitor of FOXM1, decreased XTP8 expression. Therefore, our study demonstrates that XTP8 is a valuable prognostic predictor for HCC and there is a novel positive regulatory feedback loop between XTP8 and FOXM1 promoting the development of HCC.
Collapse
|