1
|
Xie DM, Li ZY, Ren BK, Gong R, Yang D, Huang S. Tanshinone II A Facilitates Chemosensitivity of Osteosarcoma Cells to Cisplatin via Activation of p38 MAPK Pathway. Chin J Integr Med 2024:10.1007/s11655-024-4118-5. [PMID: 39499413 DOI: 10.1007/s11655-024-4118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To examine the mechanism of action of tanshinone II A (Tan II A) in promoting chemosensitization of osteosarcoma cells to cisplatin (DDP). METHODS The effects of different concentrations of Tan II A (0-80 µ mol/L) and DDP (0-2 µ mol/L) on the proliferation of osteosarcoma cell lines (U2R, U2OS, 143B, and HOS) at different times were examined using the cell counting kit-8 and colony formation assays. Migration and invasion of U2R and U2OS cells were detected after 24 h treatment with 30 µ mol/L Tan II A, 0.5 µ mol/L DDP alone, and a combination of 10 µ mol/L Tan II A and 0.25 µ mol/L DDP using the transwell assay. After 48 h of treatment of U2R and U2OS cells with predetermined concentrations of each group of drugs, the cell cycle was analyzed using a cell cycle detection kit and flow cytometry. After 48 h treatment, apoptosis of U2R and U2OS cells was detected using annexin V-FITC apoptosis detection kit and flow cytometry. U2R cells were inoculated into the unilateral axilla of nude mice and then the mice were randomly divided into 4 groups of 6 nude mice each. The 4 groups were treated with equal volume of Tan II A (15 mg/kg), DDP (3 mg/kg), Tan II A (7.5 mg/kg) + DDP (1.5 mg/kg), and normal saline, respectively. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell-related gene and signaling pathway expression were detected by RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analysis. p38 MAPK signaling pathway proteins and apoptotic protein expressions were detected by Western blot. RESULTS In vitro studies have shown that Tan II A, DDP and the combination of Tan II A and DDP inhibit the proliferation, migration and invasion of osteosarcoma cells. The inhibitory effect was more pronounced in the Tan II A and DDP combined treatment group (P<0.05 or P<0.01). Osteosarcoma cells underwent significantly cell-cycle arrest and cell apoptosis by Tan II A-DDP combination treatment (P<0.05 or P<0.01). In vivo studies demonstrated that the Tan II A-DD combination treatment group significantly inhibited tumor growth compared to the Tan II A and DDP single drug group (P<0.01). Additionally, we found that the combination of Tan II A and DDP treatment enhanced the p38 MAPK signaling pathway. Western blot assays showed higher p-p38, cleaved caspase-3, and Bax and lower caspase-3, and Bcl-2 expressions with the combination of Tan II A and DDP treatment compared to the single drug treatment (P<0.01). CONCLUSION Tan II A synergizes with DDP by activating the p38/MAPK pathway to upregulate cleaved caspase-3 and Bax pro-apoptotic gene expressions, and downregulate caspase-3 and Bcl-2 inhibitory apoptotic gene expressions, thereby enhancing the chemosensitivity of osteosarcoma cells to DDP.
Collapse
Affiliation(s)
- Da-Ming Xie
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Zhi-Yun Li
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Bing-Kai Ren
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Rui Gong
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, 330052, China
| | - Dong Yang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China
| | - Sheng Huang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, 330006, China.
| |
Collapse
|
2
|
Han S, Yu X, Wang R, Wang X, Liu L, Zhao Q, Xie R, Li M, Zhou ZS. Tanshinone IIA inhibits cell viability and promotes PUMA-mediated apoptosis of oral squamous cell carcinoma. J Cancer 2023; 14:2481-2490. [PMID: 37670974 PMCID: PMC10475368 DOI: 10.7150/jca.84537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/02/2023] [Indexed: 09/07/2023] Open
Abstract
Apoptosis alteration is responsible for tumorigenesis and tumor resistance to therapies. The natural product Tanshinone IIA (Tan IIA) exhibits potent inhibitory effects against various tumors. However, the effect of Tan IIA on apoptosis and its underlying mechanism remains elusive in oral squamous cell carcinoma (OSCC). Here, we demonstrated that Tan IIA dose-dependently suppressed cell viability and colony formation in CAL27, SCC4, and SCC25 cells. Moreover, Tan IIA inhibited Akt activation from inducing Foxo3a dephosphorylation and PUMA-mediated apoptosis. PUMA or Foxo3a knockdown compromised the inhibitory effect of Tan IIA on OSCC cells. Tan IIA administration inhibited CAL27-deprived xenograft tumor growth and increased PUMA expression in vivo. Tan IIA synergistically intensified the efficacy of CDDP/5-FU-based chemotherapy on OSCC cells. Overall, our results revealed that Tan IIA exerted potent antitumor effects via promoting PUMA-mediated apoptosis in OSCC cells.
Collapse
Affiliation(s)
- Shuangze Han
- The Third Hospital of Changsha, Changsha 410015 Hunan, People's Republic of China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77054, USA
| | - Ruirui Wang
- Department of Radiology, the Third Xiangya Hospital, Changsha, 410013, China
| | - Xiaocong Wang
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - LuLu Liu
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - Qing Zhao
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - RongBo Xie
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - Ming Li
- Hunan University of Chinese Medicine Affiliated Stomatological Hospital, Changsha 410208 Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha 410004 Hunan, People's Republic of China
| | - Zhong Su Zhou
- The Third Hospital of Changsha, Changsha 410015 Hunan, People's Republic of China
| |
Collapse
|
3
|
Li H, Hu P, Zou Y, Yuan L, Xu Y, Zhang X, Luo X, Zhang Z. Tanshinone IIA and hepatocellular carcinoma: A potential therapeutic drug. Front Oncol 2023; 13:1071415. [PMID: 36798821 PMCID: PMC9928209 DOI: 10.3389/fonc.2023.1071415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/04/2023] Open
Abstract
Because of its high prevalence and poor long-term clinical treatment effect, liver disease is regarded as a major public health problem around the world. Among them, viral hepatitis, fatty liver, cirrhosis, non-alcoholic fatty liver disease (NAFLD), and autoimmune liver disease are common causes and inducements of liver injury, and play an important role in the occurrence and development of hepatocellular carcinoma (HCC). Tanshinone IIA (TsIIA) is a fat soluble polyphenol of Salvia miltiorrhiza that is extracted from Salvia miltiorrhiza. Because of its strong biological activity (anti-inflammatory, antioxidant), it is widely used in Asia to treat cardiovascular and liver diseases. In addition, TsIIA has shown significant anti-HCC activity in previous studies. It not only has significant anti proliferation and pro apoptotic properties. It can also play an anti-cancer role by mediating a variety of signal pathways, including phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa-B (NF-κB). This review not only reviews the existing evidence and molecular mechanism of TsIIA's anti-HCC effect but also reviews the liver-protective effect of TsIIA and its impact on liver fibrosis, NAFLD, and other risk factors for liver cancer. In addition, we also conducted network pharmacological analysis on TsIIA and HCC to further screen and explore the possible targets of TsIIA against hepatocellular carcinoma. It is expected to provide a theoretical basis for the development of anti-HCC-related drugs based on TsIIA.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Pengbo Hu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China
| | - Yajun Zou
- Emergency Department, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Yuan
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Yucheng Xu
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaohui Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xiaoyan Luo
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Affiliated Hospital of Binzhou Medical College, Binzhou, China,Institute of Medical Science of Binzhou Medical University, Yantai, China,*Correspondence: Zhiqiang Zhang,
| |
Collapse
|
4
|
Banerjee A, Sriramulu S, Catanzaro R, He F, Chabria Y, Balakrishnan B, Hari S, Ayala A, Muñoz M, Pathak S, Marotta F. Natural Compounds as Integrative Therapy for Liver Protection against Inflammatory and Carcinogenic Mechanisms: From Induction to Molecular Biology Advancement. Curr Mol Med 2023; 23:216-231. [PMID: 35297348 DOI: 10.2174/1566524022666220316102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/20/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
The liver is exposed to several harmful substances that bear the potential to cause excessive liver damage ranging from hepatitis and non-alcoholic fatty liver disease to extreme cases of liver cirrhosis and hepatocellular carcinoma. Liver ailments have been effectively treated from very old times with Chinese medicinal herbal formulations and later also applied by controlled trials in Japan. However, these traditional practices have been hardly well characterized in the past till in the last decades when more qualified studies have been carried out. Modern advances have given rise to specific molecular targets which are specifically good candidates for affecting the intricate mechanisms that play a role at the molecular level. These therapeutic regimens that mainly affect the progression of the disease by inhibiting the gene expression levels or by blocking essential molecular pathways or releasing cytokines may prove to play a vital role in minimizing the tissue damage. This review, therefore, tries to throw light upon the variation in the therapies for the treatment of benign and malignant liver disease from ancient times to the current date. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of benign chronic liver diseases as well as prevention and treatment of HCC is still warranted.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Roberto Catanzaro
- Dept of Clinical and Experimental Medicine, Section of Gastroenterology, University of Catania, Catania, Italy
| | - Fang He
- Dept of Nutrition, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yashna Chabria
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Sruthi Hari
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antonio Ayala
- Biochemistry and Clinical Biochemistry Department, Faculty of Pharmacy, University of Seville, Spain
| | - Mario Muñoz
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano, Italy and Vitality and Longevity Medical Science Commission, FEMTEC World Federation
| |
Collapse
|
5
|
Zhao J, Lin E, Cai C, Zhang M, Li D, Cai S, Zeng G, Yin Z, Wang B, Li P, Hong X, Chen J, Zou B, Li J. Combined Treatment of Tanshinone I and Epirubicin Revealed Enhanced Inhibition of Hepatocellular Carcinoma by Targeting PI3K/AKT/HIF-1α. Drug Des Devel Ther 2022; 16:3197-3213. [PMID: 36158238 PMCID: PMC9507289 DOI: 10.2147/dddt.s360691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
Background Epirubicin (EADM) is a common chemotherapeutic agent in hepatocellular carcinoma (HCC). The accumulation of hypoxia-inducible factor-1α (HIF-1α) is an important cause of drug resistance to EADM in HCC. Tanshinone I (Tan I) is an agent with promising anti-cancer effects alone or with other drugs. Some tanshinones mediate HIF-1α regulation via PI3K/AKT. However, the role of Tan I combined with EADM to reduce the resistance of HCC to EADM has not been investigated. Therefore, this study aimed to investigate the combined use of Tan I and EADM in HCC and the underlying mechanism of PI3K/AKT/HIF-1α. Methods HCC cells were treated with Tan I, EADM, or the combined treatment for 48 hrs. Cell transfection was used to construct HIF-1α overexpression HCC stable cells. Cell viability, colony formation, and flow cytometric assays were used to detect the viability, proliferation, and apoptosis in HCC cells. Synergism between Tan I and EADM were tested by calculating the Bliss synergy score, positive excess over bliss additivism (EOBA), and the combination index (CI). Western blotting analyses were used to detect the levels of β-actin, HIF-1α, PI3K p110α, p-Akt Thr308, Cleaved Caspase-3, and Cleaved Caspase-9. Toxicity parameters were used to evaluate the safety of the combination in mice. The xenograft model of mice was built by HCC stable cell lines, which was administrated with Tan I, EADM, or a combination of them for 8 weeks. Immunohistochemistry staining (IHC) was used to assess tumor apoptosis in mouse models. Results Hypoxia could upregulate HIF-1α to induce drug resistance in HCC cancer cells. The combination of Tan I and EADM was synergistic. Although Tan I or EADM alone could inhibit HCC cancer cells, the combination of them could further enhance the cytotoxicity and growth inhibition by targeting the PI3K/AKT/HIF-1α signaling pathway. Furthermore, Tan I and EADM synergistically reversed HIF-1α-mediated drug resistance to inhibit HCC. The results of toxicity parameters showed that the combination was safe in mice. Meanwhile, animal models showed that Tan I not only improved the anti-tumor effect of EADM, but also reduced the drug reactions of EADM-induced weight loss. Conclusion Our results suggested that Tan I could effectively improve the anti-tumor effect of EADM, and synergize EADM to reverse HIF-1α mediated resistance via targeting PI3K/AKT/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - En Lin
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Manyao Zhang
- Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Decheng Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Shanglin Cai
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Guifang Zeng
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Zeren Yin
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Peiping Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Xiaopeng Hong
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jiafan Chen
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Baojia Zou
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Jian Li
- Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China,Correspondence: Jian Li; Baojia Zou, Department of Hepatobiliary Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, People’s Republic of China, Tel +86-756-252-8781, Fax +86-756-252-8166, Email ;
| |
Collapse
|
6
|
Zhong C, Lin Z, Ke L, Shi P, Li S, Huang L, Lin X, Yao H. Recent Research Progress (2015-2021) and Perspectives on the Pharmacological Effects and Mechanisms of Tanshinone IIA. Front Pharmacol 2021; 12:778847. [PMID: 34819867 PMCID: PMC8606659 DOI: 10.3389/fphar.2021.778847] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in Salvia miltiorrhiza, and its various aspects of research are constantly being updated to explore its potential application. In this paper, we review the recent progress on pharmacological activities and the therapeutic mechanisms of Tan IIA according to literature during the years 2015-2021. Tan IIA shows multiple pharmacological effects, including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and motor systems activities. Tan IIA modulates multi-targets referring to Nrf2, AMPK, GSK-3β, EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2 proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9, Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which directly or indirectly influence disease course. Further, with the reported targets, the potential effects and possible mechanisms of Tan IIA against diseases were predicted by bioinformatic analysis. This paper provides new insights into the therapeutic effects and mechanisms of Tan IIA against diseases.
Collapse
Affiliation(s)
- Chenhui Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zuan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Liying Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Berkes C, Franco J, Lawson M, Brann K, Mermelstein J, Laverty D, Connors A. Kinase Inhibitor Library Screening Identifies the Cancer Therapeutic Sorafenib and Structurally Similar Compounds as Strong Inhibitors of the Fungal Pathogen Histoplasma capsulatum. Antibiotics (Basel) 2021; 10:antibiotics10101223. [PMID: 34680804 PMCID: PMC8532743 DOI: 10.3390/antibiotics10101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022] Open
Abstract
Histoplasma capsulatum is a dimorphic fungal pathogen endemic to the midwestern and southern United States. It causes mycoses ranging from subclinical respiratory infections to severe systemic disease, and is of particular concern for immunocompromised patients in endemic areas. Clinical management of histoplasmosis relies on protracted regimens of antifungal drugs whose effectiveness can be limited by toxicity. In this study, we hypothesize that conserved biochemical signaling pathways in the eukaryotic domain can be leveraged to repurpose kinase inhibitors as antifungal compounds. We conducted a screen of two kinase inhibitor libraries to identify compounds inhibiting the growth of Histoplasma capsulatum in the pathogenic yeast form. Our approach identified seven compounds with an elongated hydrophobic polyaromatic structure, five of which share a molecular motif including a urea unit linking a halogenated benzene ring and a para-substituted polyaromatic group. The top hits include the cancer therapeutic Sorafenib, which inhibits growth of Histoplasma in vitro and in a macrophage infection model with low host cell cytotoxicity. Our results reveal the possibility of repurposing Sorafenib or derivatives thereof as therapy for histoplasmosis, and suggest that repurposing of libraries developed for human cellular targets may be a fruitful source of antifungal discovery.
Collapse
Affiliation(s)
- Charlotte Berkes
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
- Correspondence:
| | - Jimmy Franco
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| | - Maxx Lawson
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Katelynn Brann
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Jessica Mermelstein
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
| | - Daniel Laverty
- Department of Biology, Merrimack College, North Andover, MA 01845, USA; (M.L.); (K.B.); (J.M.); (D.L.)
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| | - Allison Connors
- Department of Chemistry and Biochemistry, Merrimack College, North Andover, MA 01845, USA; (J.F.); (A.C.)
| |
Collapse
|
8
|
Estolano-Cobián A, Alonso MM, Díaz-Rubio L, Ponce CN, Córdova-Guerrero I, Marrero JG. Tanshinones and their Derivatives: Heterocyclic Ring-Fused Diterpenes of Biological Interest. Mini Rev Med Chem 2021; 21:171-185. [PMID: 32348220 DOI: 10.2174/1389557520666200429103225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
The available scientific literature regarding tanshinones is very abundant, and after its review, it is noticeable that most of the articles focus on the properties of tanshinone I, cryptotanshinone, tanshinone IIA, sodium tanshinone IIA sulfonate and the dried root extract of Salvia miltiorrhiza (Tan- Shen). However, although these products have demonstrated important biological properties in both in vitro and in vivo models, their poor solubility and bioavailability have limited their clinical applications. For these reasons, many studies have focused on the search for new pharmaceutical formulations for tanshinones, as well as the synthesis of new derivatives that improve their biological properties. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2015) on tanshinones in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we offer an update on the last five years of new research on these quinones, focusing on their synthesis, biological activity on noncommunicable diseases and drug delivery systems, to support future research on its clinical applications.
Collapse
Affiliation(s)
- Arturo Estolano-Cobián
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Mariana Macías Alonso
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Laura Díaz-Rubio
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Cecilia Naredo Ponce
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Quiımicas e Ing, Universidad Autonoma de Baja California, Clz. Universidad 14418, Parque Industrial Internacional, Tijuana, B. C. CP 22390, Mexico
| | - Joaquín G Marrero
- Instituto Politecnico Nacional, UPIIG, Av. Mineral de Valenciana, No. 200, Col. Fracc, Industrial Puerto Interior, C.P. 36275 Silao de la Victoria, Guanajuato, Mexico
| |
Collapse
|
9
|
Gain C, Sarkar A, Bural S, Rakshit M, Banerjee J, Dey A, Biswas N, Kar GK, Saha A. Identification of two novel thiophene analogues as inducers of autophagy mediated cell death in breast cancer cells. Bioorg Med Chem 2021; 37:116112. [PMID: 33751939 DOI: 10.1016/j.bmc.2021.116112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
Natural compounds isolated from different medicinal plants remain one of the major resources of anticancer drugs due to their enormous chemical diversity. Studies suggested therapeutic potential for various tanshinones, key bioactive lipophilic compounds from the root extracts of Salvia miltiorrhiza Bunge, against multiple cancers including breast carcinoma. We designed, synthesized and evaluated anti-cancer properties of a series of condensed and doubly condensed furophenanthraquinones of tanshinone derivatives on two breast cancer lines - MCF7 and MDA-MB-231. We identified two thiophene analogues - compounds 48 and 52 with greater anti-proliferative efficiency (~4 fold) as compared to the natural tanshinones. Mechanistically, we showed that both compounds induced autophagy mediated cell death and partial but significant restoration of cell death in the presence of autophagy inhibitor further supported this notion. Both compounds transcriptionally activated several autophagy genes responsible for autophagosome formation along with two death regulators - GADD34 and CHOP for inducing cell death. Altogether, our studies provide strong evidence to support compounds 48 and 52 as promising leads for further development as anticancer agents through modulating autophagy mechanism.
Collapse
Affiliation(s)
- Chandrima Gain
- School of Biotechnology, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata 700156, West Bengal, India
| | - Aparna Sarkar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Shrea Bural
- School of Biotechnology, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata 700156, West Bengal, India
| | - Moumita Rakshit
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Jeet Banerjee
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Ankita Dey
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Gandhi K Kar
- Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Abhik Saha
- School of Biotechnology, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata 700156, West Bengal, India.
| |
Collapse
|
10
|
Li M, Liu H, Zhao Q, Han S, Zhou L, Liu W, Li W, Gao F. Targeting Aurora B kinase with Tanshinone IIA suppresses tumor growth and overcomes radioresistance. Cell Death Dis 2021; 12:152. [PMID: 33542222 PMCID: PMC7862432 DOI: 10.1038/s41419-021-03434-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022]
Abstract
Aurora B kinase is aberrantly overexpressed in various tumors and shown to be a promising target for anti-cancer therapy. In human oral squamous cell carcinoma (OSCC), the high protein level of Aurora B is required for maintaining of malignant phenotypes, including in vitro cell growth, colony formation, and in vivo tumor development. By molecular modeling screening of 74 commercially available natural products, we identified that Tanshinone IIA (Tan IIA), as a potential Aurora B kinase inhibitor. The in silico docking study indicates that Tan IIA docks into the ATP-binding pocket of Aurora B, which is further confirmed by in vitro kinase assay, ex vivo pull-down, and ATP competitive binding assay. Tan IIA exhibited a significant anti-tumor effect on OSCC cells both in vitro and in vivo, including reduction of Aurora B and histone H3 phosphorylation, induction of G2/M cell cycle arrest, increase the population of polyploid cells, and promotion of apoptosis. The in vivo mouse model revealed that Tan IIA delayed tumor growth of OSCC cells. Tan IIA alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Taken together, our data indicate that Tan IIA is an Aurora B kinase inhibitor with therapeutic potentials for cancer treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
- Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410000, Hunan, People's Republic of China
| | - Haidan Liu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qin Zhao
- Changsha Stomatological Hospital, Changsha, 410004, Hunan, People's Republic of China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Shuangze Han
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China.
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Fang ZY, Zhang M, Liu JN, Zhao X, Zhang YQ, Fang L. Tanshinone IIA: A Review of its Anticancer Effects. Front Pharmacol 2021; 11:611087. [PMID: 33597880 PMCID: PMC7883641 DOI: 10.3389/fphar.2020.611087] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Tanshinone IIA (Tan IIA) is a pharmacologically lipophilic active constituent isolated from the roots and rhizomes of the Chinese medicinal herb Salvia miltiorrhiza Bunge (Danshen). Tan IIA is currently used in China and other neighboring countries to treat patients with cardiovascular system, diabetes, apoplexy, arthritis, sepsis, and other diseases. Recently, it was reported that tan IIA could have a wide range of antitumor effects on several human tumor cell lines, but the research of the mechanism of tan IIA is relatively scattered in cancer. This review aimed to summarize the recent advances in the anticancer effects of tan IIA and to provide a novel perspective on clinical use of tan IIA.
Collapse
Affiliation(s)
- Zhong-Ying Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Jia-Ning Liu
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Xue Zhao
- School of Biological Sciences and Technology, University of Jinan, Jinan, China
| | - Yong-Qing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Fang
- School of Biological Sciences and Technology, University of Jinan, Jinan, China.,School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
12
|
Li X, Chen W, Liu K, Zhang S, Yang R, Liu K, Li D, Huang Y. Oridonin Sensitizes Hepatocellular Carcinoma to the Anticancer Effect of Sorafenib by Targeting the Akt Pathway. Cancer Manag Res 2020; 12:8081-8091. [PMID: 32982405 PMCID: PMC7494228 DOI: 10.2147/cmar.s257482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 01/07/2023] Open
Abstract
Background Oridonin is the core bioactive component of Rabdosia rubescens, a traditional Chinese herbal medicine used in the treatment of hepatoma. Sorafenib, a targeted therapeutic agent for advanced hepatocellular carcinoma (HCC), has recently been shown to exert limited clinical effects. However, few studies have focused on the synergistic effect of these two drugs on hepatocellular carcinoma. Methods We treated different HCC cell lines with different concentrations of oridonin and sorafenib and assessed the viability by using MTT assays and examined proliferation, migration, invasion and apoptosis after cotreatment of HepG2 cells with 20 μM oridonin and 5 μM sorafenib via colony formation assays, Transwell assays and flow cytometry. Regulatory effects were measured by Western blotting. The in vivo synergistic effect was confirmed through xenograft tumor models, and tumor tissues were analyzed by immunohistochemistry. Results The inhibitory effects of oridonin and sorafenib cotreatment on HCC cells were stronger than those of either drug alone. In addition, combined treatment with the two drugs synergistically inhibited epithelial–mesenchymal transition and the Akt pathway but not NF-κB or MAPK signaling. Akt phosphorylation by SC79 reversed the inhibitory effects of the combined treatment. Synergistic inhibition was equally observed in vivo. Conclusion Oridonin combined with sorafenib synergistically inhibited proliferation, migration, invasion, and epithelial–mesenchymal transition and induced apoptosis by targeting the Akt pathway but not NF-κB or MAPK signaling.
Collapse
Affiliation(s)
- Xuguang Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, People's Republic of China.,Department of Abdominal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Weirun Chen
- Department of Abdominal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Kaihang Liu
- Department of General Practice, The People's Hospital of Longhua, Shenzhen, Guangdong Province, People's Republic of China
| | - Sheng Zhang
- Department of Abdominal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Ru Yang
- Department of General Practice, Women & Children Health Institute Futian Shenzhen, Shenzhen, Guangdong Province, People's Republic of China
| | - Kairui Liu
- Department of Abdominal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| | - Dateng Li
- Department of Statistical Science, Southern Methodist University, Dallas, TX 75275, USA
| | - Youxing Huang
- Department of Abdominal Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
13
|
Li M, Gao F, Zhao Q, Zuo H, Liu W, Li W. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis. Cell Death Dis 2020; 11:381. [PMID: 32424132 PMCID: PMC7235009 DOI: 10.1038/s41419-020-2579-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Aerobic glycolysis is one of the hallmarks of human cancer cells. Overexpression of hexokinase 2 (HK2) plays a crucial role in the maintaining of unlimited tumor cell growth. In the present study, we found that the oral squamous cell carcinoma (OSCC) cells exhibited an aerobic glycolysis phenotype. Moreover, HK2 is highly expressed in OSCC patient derived-tissues and cell lines. Depletion of HK2 inhibited OSCC cell growth in vitro and in vivo. With a natural product screening, we identified Tanshinone IIA (Tan IIA) as a potential anti-tumor compound for OSCC through suppressing HK2-mediated glycolysis. Tan IIA decreased glucose consumption, lactate production, and promoted intrinsic apoptosis in OSCC cells. The mechanism study revealed that Tan IIA inhibited the Akt-c-Myc signaling and promoted E3 ligase FBW7-mediated c-Myc ubiquitination and degradation, which eventually reduced HK2 expression at the transcriptional level. In summary, these results indicate that targeting HK2-mediated aerobic glycolysis is a promising anti-tumor strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, 410000, Changsha, Hunan, P.R. China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Qing Zhao
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Huilan Zuo
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, P.R. China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| |
Collapse
|
14
|
Liang S, Wang Z, Yuan J, Zhang J, Dai X, Qin F, Zhang J, Sun Y. Rapid Identification of Tanshinone IIA Metabolites in an Amyloid-β 1-42 Induced Alzherimer's Disease Rat Model using UHPLC-Q-Exactive Qrbitrap Mass Spectrometry. Molecules 2019; 24:molecules24142584. [PMID: 31315255 PMCID: PMC6680413 DOI: 10.3390/molecules24142584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder that damages health and welfare of the elderly, and there has been no effective therapy for AD until now. It has been proved that tanshinone IIA (tan IIA) could alleviate pathological symptoms of AD via improving non-amyloidogenic cleavage of amyloid precursor protein, decreasing the accumulations of p-tau and amyloid-β1–42 (Aβ1–42), and so forth. However, the further biochemical mechanisms of tan IIA are not clear. The experiment was undertaken to explore metabolites of tan IIA in AD rats induced by microinjecting Aβ1-42 in the CA1 region of hippocampus. AD rats were orally administrated with tan IIA at 100 mg/kg weight, and plasma, urine, faeces, kidney, liver and brain were then collected for metabolites analysis by UHPLC-Q-Exactive Qrbitrap mass spectrometry. Consequently, a total of 37 metabolites were positively or putatively identified on the basis of mass fragmentation behavior, accurate mass measurements and retention times. As a result, methylation, hydroxylation, dehydration, decarbonylation, reduction reaction, glucuronidation, glycine linking and their composite reactions were characterized to illuminate metabolic pathways of tan IIA in vivo. Several metabolites presented differences in the distribution of tan IIA between the sham control and the AD model group. Overall, these results provided valuable references for research on metabolites of tan IIA in vivo and its probable active structure for exerting neuroprotection.
Collapse
Affiliation(s)
- Shuang Liang
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Zijian Wang
- Beijing University of Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing 100191, China
| | - Jiaqi Yuan
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Jing Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing 100191, China
| | - Xueling Dai
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Fei Qin
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yaxuan Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100191, China.
| |
Collapse
|