1
|
Iftikhar A, Shepherd S, Jones S, Ellis I. Effect of Mifepristone on Migration and Proliferation of Oral Cancer Cells. Int J Mol Sci 2024; 25:8777. [PMID: 39201464 PMCID: PMC11354386 DOI: 10.3390/ijms25168777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Glucocorticoid receptor (GR) overexpression has been linked to increased tumour aggressiveness and treatment resistance. GR antagonists have been shown to enhance treatment effectiveness. Emerging research has investigated mifepristone, a GR antagonist, as an anticancer agent with limited research in the context of oral cancer. This study investigated the effect of mifepristone at micromolar (µM) concentrations of 1, 5, 10 and 20 on the proliferation and migration of oral cancer cells, at 24 and 48 h. Scratch and scatter assays were utilised to assess cell migration, MTT assays were used to measure cell proliferation, Western blotting was used to investigate the expression of GR and the activation of underlying Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signalling pathways, and immunofluorescence (IF) was used to determine the localisation of proteins in HaCaT (immortalised human skin keratinocytes), TYS (oral adeno squamous cell carcinoma), and SAS-H1 cells (squamous cell carcinoma of human tongue). Mifepristone resulted in a dose-dependent reduction in the proliferation of HaCaT, TYS, and SAS-H1 cells. Mifepristone at a concentration of 20 µM effectively reduced collective migration and scattering of oral cancer cells, consistent with the suppression of the PI3K-Akt and MAPK signalling pathways, and reduced expression of N-Cadherin. An elongated cell morphology was, however, observed, which may be linked to the localisation pattern of E-Cadherin in response to mifepristone. Overall, this study found that a high concentration of mifepristone was effective in the suppression of migration and proliferation of oral cancer cells via the inhibition of PI3K-Akt and MAPK signalling pathways. Further investigation is needed to define its impact on epithelial-mesenchymal transition (EMT) markers.
Collapse
Affiliation(s)
| | | | | | - Ian Ellis
- School of Dentistry, University of Dundee, Dundee DD1 4HR, UK; (A.I.); (S.S.); (S.J.)
| |
Collapse
|
2
|
Jiang M, Huang L, Wang Y, Wang Y, Kang Q, Chen C, Hu Y, Li J, Wang T. Yueliang Yin Ameliorates Endometrial Receptivity in Mice with Embryo Implantation Failure by Reducing Pyroptosis and Activating BDNF/TrkB Pathway. Mol Nutr Food Res 2023; 67:e2300339. [PMID: 37797178 DOI: 10.1002/mnfr.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Indexed: 10/07/2023]
Abstract
SCOPE Endometrial receptivity plays a vital role in embryonic implantation. Yueliang Yin is a marketed solid drink in China, also known as Bushen Cuyun Recipe (BCR), that is, assumed to have a therapeutic effect on infertility by improving endometrial receptivity. This study investigates the effects and mechanisms of BCR in protecting the endometrium. METHODS AND RESULTS Mice with mifepristone-induced embryo implantation failure that exhibited a decreased implantation sites number, thinner endometrium, reduced endometrial glands number, and poor pinopode expression levels are treated with BCR, and these mentioned conditions significantly improves afterward. Molecular docking shows that the main active components kaempferol, quercetin, and hesperetin of BCR stably bound to gasdermin D (GSDMD). Experimental results demonstrate that levels of GSDMD, cleaved caspase-1 and leucine-rich repeat, and pyrin domain-containing 3 and IL-1β levels in model mice are significantly decreased and expressions of brain-derived neurotrophic factor (BDNF) and tyrosine protein kinase B (TrkB) expression levels are significantly elevated after BCR treatments, and that the DNA damage is significantly reversed in BCR-treated mice. CONCLUSIONS BCR is potent and effective in ameliorating endometrial receptivity. The potential mechanisms of BCR on endometrial receptivity may mediate by activating BDNF/TrkB pathway activation and protecting endometrial cells' protection against pyroptosis.
Collapse
Affiliation(s)
- Mei Jiang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ling Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxi Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
- National Key Laboratory of Efficacy and Mechanism on Chinese Medicine for Metabolic Diseases, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qianjun Kang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong Chen
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yujie Hu
- Ziqiang Vocational School of Shaanxi Province, Shaanxi Province, 721000, China
| | - Jialin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
3
|
Treger S, Ackerman S, Kaplan V, Ghanem S, Nadir Y. Progestin type affects the increase of heparanase level and procoagulant activity mediated by the estrogen receptor. Hum Reprod 2021; 36:61-69. [PMID: 33306105 DOI: 10.1093/humrep/deaa263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/22/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does progestin have an effect on heparanase level and procoagulant activity? SUMMARY ANSWER Progestin increases the heparanase level and procoagulant activity via the estrogen receptor and the magnitude of the effect depends on the progestin type. WHAT IS KNOWN ALREADY Users of combined oral contraceptives (COCs) containing third- and fourth-generation progestins have a higher risk of venous thrombosis compared to those employing second-generation progestins. Heparanase protein is capable of degrading heparan sulfate (HS) chains and enhancing activation of the coagulation system. We have previously demonstrated that estrogen enhances the expression and procoagulant activity of heparanase. STUDY DESIGN, SIZE, DURATION Estrogen and progestin receptor positive breast carcinoma cell lines: EMT6, T47D and MCF-7 were compared to the MDA-231 breast carcinoma cell line devoid of these receptors. This observational study incorporated 45 users of third-generation COCs progestins, 21 users of fourth-generation COCs progestins and 28 individuals not using hormonal therapy and not pregnant per history. PARTICIPANTS/MATERIALS, SETTING, METHODS Second-generation progestin-levonorgestrel, third-generation progestin-desogastrel (DSG), an estrogen receptor antagonist-ICI 182.780 and a progestin receptor antagonist-mifepristone, were added to cell lines. Heparanase level and procoagulant activity, HS levels, tissue factor (TF) activity and factor Xa levels were evaluated in the plasma of the study group. MAIN RESULTS AND THE ROLE OF CHANCE Levonorgestrel and DSG increased heparanase levels in the cells and medium. The effect of DSG was more prominent and additive to that of estrogen. The effect was inhibited by ICI 182.780. In the plasma of COC users, heparanase procoagulant activity, HS levels, TF activity and factor Xa levels were significantly higher compared to controls. In COC pills containing the same dose of estrogen, the procoagulant effect of drospirenone was significantly stronger than that of DSG and gestodene. LIMITATIONS, REASONS FOR CAUTION The limitations of the study include a small number of participants in each study group, although the results are statistically significant and evaluated by several different coagulation parameters. WIDER IMPLICATIONS OF THE FINDINGS The study demonstrates a new mechanism through which progestin affects coagulation system activation and shows that this effect is progestin type-dependent. Development of a progestin derivative with an attenuated effect on heparanase procoagulant activity may reduce thrombotic risk. STUDY FUNDING/COMPETING INTEREST(S) No external funding was sought for this study. Y.N. is named in a European patent application No. IL201200027 filed on 18 January 2012. Other authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sharon Treger
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shanny Ackerman
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Victoria Kaplan
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Shourouk Ghanem
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yona Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
4
|
Chen B, Ye P, Chen Y, Liu T, Cha JH, Yan X, Yang WH. Involvement of the Estrogen and Progesterone Axis in Cancer Stemness: Elucidating Molecular Mechanisms and Clinical Significance. Front Oncol 2020; 10:1657. [PMID: 33014829 PMCID: PMC7498570 DOI: 10.3389/fonc.2020.01657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen and progesterone regulate the growth and development of human tissues, including the reproductive system and breasts, through estrogen and progesterone receptors, respectively. These receptors are also important indicators for the clinical prognosis of breast cancer and various reproductive cancers. Many studies have reported that cancer stem cells (CSCs) play a key role in tumor initiation, progression, metastasis, and recurrence. Although the role of estrogen and progesterone in human organs and various cancers has been studied, the molecular mechanisms underlying the action of these hormones on CSCs remain unclear. Therefore, further elucidation of the effects of estrogen and progesterone on CSCs should provide a new direction for developing pertinent therapies. In this review, we summarize the current knowledge on the estrogen and progesterone axis involved in cancer stemness and discuss potential therapeutic strategies to inhibit CSCs by targeting relevant pathways.
Collapse
Affiliation(s)
- Bi Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Peng Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China.,The Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, South Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wen-Hao Yang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Costa B, Amorim I, Gärtner F, Vale N. Understanding Breast cancer: from conventional therapies to repurposed drugs. Eur J Pharm Sci 2020; 151:105401. [PMID: 32504806 DOI: 10.1016/j.ejps.2020.105401] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most common cancer among women and is considered a developed country disease. Moreover, is a heterogenous disease, existing different types and stages of breast cancer development, therefore, better understanding of cancer biology, helps to improve the development of therapies. The conventional treatments accessible after diagnosis, have the main goal of controlling the disease, by improving survival. In more advance stages the aim is to prolong life and symptom palliation care. Surgery, radiation therapy and chemotherapy are the main options available, which must be adapted to each person individually. However, patients are developing resistance to the conventional therapies. This resistance is due to alterations in important regulatory pathways such as PI3K/AKt/mTOR, this pathway contributes to trastuzumab resistance, a reference drug to treat breast cancer. Therefore, is proposed the repurposing of drugs, instead of developing drugs de novo, for example, to seek new medical treatments within the drugs available, to be used in breast cancer treatment. Providing safe and tolerable treatments to patients, and new insights to efficacy and efficiency of breast cancer treatments. The economic and social burden of cancer is enormous so it must be taken measures to relieve this burden and to ensure continued access to therapies to all patients. In this review we focus on how conventional therapies against breast cancer are leading to resistance, by reviewing those mechanisms and discussing the efficacy of repurposed drugs to fight breast cancer.
Collapse
Affiliation(s)
- Bárbara Costa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Fátima Gärtner
- Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Nuno Vale
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo 228, 4050-313 Porto, Portugal; Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal; i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
6
|
Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM. Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer 2019; 19:376. [PMID: 31014286 PMCID: PMC6480622 DOI: 10.1186/s12885-019-5587-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/05/2019] [Indexed: 01/30/2023] Open
Abstract
Background Previous work in our laboratory demonstrated that antiprogestin mifepristone impairs the growth and adhesion of highly metastatic cancer cells, and causes changes in their cellular morphology. In this study, we further assess the anti-metastatic properties of mifepristone, by studying whether cytostatic doses of the drug can inhibit the migration and invasion of various cancer cell lines using a double fluorescence cytochemical labeling approach. Methods Cell lines representing cancers of the ovary (SKOV-3), breast (MDA-MB-231), glia (U87MG), or prostate (LNCaP) were treated with cytostatic concentrations of mifepristone. Wound healing and Boyden chamber assays were utilized to study cellular migration. To study cellular invasion, the Boyden chamber assay was prepared by adding a layer of extracellular matrix over the polycarbonate membrane. We enhanced the assays with the addition of double fluorescence cytochemical staining for fibrillar actin (F-actin) and DNA to observe the patterns of cytoskeletal distribution and nuclear positioning while cells migrate and invade. Results When exposed to cytostatic concentrations of mifepristone, all cancer cells lines demonstrated a decrease in both migration and invasion capacities measured using standard approaches. Double fluorescence cytochemical labeling validated that mifepristone-treated cancer cells exhibit reduced migration and invasion, and allowed to unveil a distinct migration pattern among the different cell lines, different arrays of nuclear localization during migration, and apparent redistribution of F-actin to the nucleus. Conclusion This study reports that antiprogestin mifepristone inhibits migration and invasion of highly metastatic cancer cell lines, and that double fluorescence cytochemical labeling increases the value of well-known approaches to study cell movement. Electronic supplementary material The online version of this article (10.1186/s12885-019-5587-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina J Ritch
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - BreeAnn N Brandhagen
- Present address: Research Acceleration Office, 2001 Campus Delivery, University Services Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alicia A Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Qc, H3A 2B4, Canada.
| |
Collapse
|