1
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
2
|
Liu L, Liang D, Zheng Q, Zhao M, Lv R, Tang J, Chen N. Berbamine dihydrochloride suppresses the progression of colorectal cancer via RTKs/Akt axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116025. [PMID: 36496042 DOI: 10.1016/j.jep.2022.116025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberis amurensis Rupr. is used to treat cancer as a traditional herbal medicine. Berbamine (BBM) is a natural bisbenzylisoquinoline alkaloid extracted from Berberis amurensis which possesses multiple pharmacological activity including anticancer. AIM OF THE STUDY To investigate the influence of BBM on the progression of colorectal cancer (CRC) and further explore the underlying mechanism of BBM based on the RTKs/Akt signaling pathway. MATERIALS AND METHODS In vitro, cell viability and colony formation were conducted to detect BBM inhibitory of CRC cell lines. Transwell was detected the ability of migration and invasion by BBM. Apoptosis detection assay, cell cycle assay and the measurement of ROS were detected to confirm the inductive effect of cell apoptosis. RT-qPCR and Western blot to clarify the specific mechanism of anticancer. Finally, we conducted HE staining, Ki67, Tunnel and immunochemistry were confirmed the anti-colorectal cancer activity of BBM from vivo study. RESULTS We found that BBM could inhibit CRC cell lines growth. Moreover, BBM presented an inhibitory effect the ability of migration and invasion in CRC cells. Furthermore, the occurrence of apoptosis was involved in the anti-colorectal cancer role of BBM. BBM also triggered ROS accumulation in CRC cells that might be a key factor for the inductive effect of BBM in cell apoptosis. Cell cycle assay revealed that BBM induced the arrest of G1-S phase and increased the p21 levels but decreased CyclinE1, CyclinE2, CDK6, CyclinD1. RT-qPCR manifested that the down-regulation effect of BBM on AKT1, EGFR, PDGFRα and FGFR4 genes. The results also showed that BBM could decreased the expression levels of phosphor-AKT, PDGFRα, PDGFRβ, EGFR, FGFR3 and FGFR4 which belong to RTKs family. Consistently, BBM remarkably suppressed tumor xenograft growth in nude mice. CONCLUSION Taken together, all the results as presented above suggest that BBM as a novel multitargeted receptor tyrosine kinase inhibitor plays a crucial role in the inhibitory effect of CRC and may be a promising therapeutic agent for the CRC in clinic.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Liang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - RuiTing Lv
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022; 11:cells11081326. [PMID: 35456005 PMCID: PMC9031068 DOI: 10.3390/cells11081326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
Abstract
Despite significant technological advancements in conventional therapies, cancer remains one of the main causes of death worldwide. Although substantial progress has been made in the control and treatment of cancer, several limitations still exist, and there is scope for further advancements. Several adverse effects are associated with modern chemotherapy that hinder cancer treatment and lead to other critical disorders. Since ancient times, plant-based medicines have been employed in clinical practice and have yielded good results with few side effects. The modern research system and advanced screening techniques for plants’ bioactive constituents have enabled phytochemical discovery for the prevention and treatment of challenging diseases such as cancer. Phytochemicals such as vincristine, vinblastine, paclitaxel, curcumin, colchicine, and lycopene have shown promising anticancer effects. Discovery of more plant-derived bioactive compounds should be encouraged via the exploitation of advanced and innovative research techniques, to prevent and treat advanced-stage cancers without causing significant adverse effects. This review highlights numerous plant-derived bioactive molecules that have shown potential as anticancer agents and their probable mechanisms of action and provides an overview of in vitro, in vivo and clinical trial studies on anticancer phytochemicals.
Collapse
|
4
|
Farooqi AA, Wen R, Attar R, Taverna S, Butt G, Xu B. Regulation of Cell-Signaling Pathways by Berbamine in Different Cancers. Int J Mol Sci 2022; 23:ijms23052758. [PMID: 35269900 PMCID: PMC8911410 DOI: 10.3390/ijms23052758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 12/18/2022] Open
Abstract
Natural product research is a cornerstone of the architectural framework of clinical medicine. Berbamine is a natural, potent, pharmacologically active biomolecule isolated from Berberis amurensis. Berbamine has been shown to modulate different oncogenic cell-signaling pathways in different cancers. In this review, we comprehensively analyze how berbamine modulates deregulated pathways (JAK/STAT, CAMKII/c-Myc) in various cancers. We systematically analyze how berbamine induces activation of the TGF/SMAD pathway for the effective inhibition of cancer progression. We also summarize different nanotechnological strategies currently being used for proficient delivery of berbamine to the target sites. Berbamine has also been reported to demonstrate potent anti-cancer and anti-metastatic effects in tumor-bearing mice. The regulation of non-coding RNAs by berbamine is insufficiently studied, and future studies must converge on the identification of target non-coding RNAs. A better understanding of the regulatory role of berbamine in the modulation of non-coding RNAs and cell-signaling pathways will be advantageous in the effective translation of laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan;
| | - Ru Wen
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA;
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul 34755, Turkey;
| | - Simona Taverna
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 90146 Palermo, Italy;
- Institute of Translational Pharmacology (IFT-CNR), National Research Council of Italy, 90146 Palermo, Italy
| | - Ghazala Butt
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai 519087, China
- Correspondence: ; Tel.: +86-756-2620636
| |
Collapse
|
5
|
Malhotra B, Kulkarni GT, Dhiman N, Joshi D, Chander S, Kharkwal A, Sharma AK, Kharkwal H. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Han C, Wang Z, Chen S, Li L, Xu Y, Kang W, Wei C, Ma H, Wang M, Jin X. Berbamine Suppresses the Progression of Bladder Cancer by Modulating the ROS/NF- κB Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8851763. [PMID: 33520087 PMCID: PMC7817266 DOI: 10.1155/2021/8851763] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023]
Abstract
Berbamine (BBM), one of the bioactive ingredients extracted from Berberis plants, has attracted intensive attention because of its significant antitumor activity against various malignancies. However, the exact role and potential molecular mechanism of berbamine in bladder cancer (BCa) remain unclear. In the present study, our results showed that berbamine inhibited cell viability, colony formation, and proliferation. Additionally, berbamine induced cell cycle arrest at S phase by a synergistic mechanism involving stimulation of P21 and P27 protein expression as well as downregulation of CyclinD, CyclinA2, and CDK2 protein expression. In addition to suppressing epithelial-mesenchymal transition (EMT), berbamine rearranged the cytoskeleton to inhibit cell metastasis. Mechanistically, the expression of P65, P-P65, and P-IκBα was decreased upon berbamine treatment, yet P65 overexpression abrogated the effects of berbamine on the proliferative and metastatic potential of BCa cells, which indicated that berbamine attenuated the malignant biological activities of BCa cells by inhibiting the NF-κB pathway. More importantly, berbamine increased the intracellular reactive oxygen species (ROS) level through the downregulation of antioxidative genes such as Nrf2, HO-1, SOD2, and GPX-1. Following ROS accumulation, the intrinsic apoptotic pathway was triggered by an increase in the ratio of Bax/Bcl-2. Furthermore, berbamine-mediated ROS accumulation negatively regulated the NF-κB pathway to a certain degree. Consistent with our in vitro results, berbamine successfully inhibited tumor growth and blocked the NF-κB pathway in our xenograft model. To summarize, our data demonstrated that berbamine exerts antitumor effects via the ROS/NF-κB signaling axis in bladder cancer, which provides a basis for further comprehensive study and presents a potential candidate for clinical treatment strategies against bladder cancer.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Lin Li
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chunxiao Wei
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hongbin Ma
- Department of Hepatobiliary, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
7
|
Liu L, Yan J, Cao Y, Yan Y, Shen X, Yu B, Tao L, Wang S. Proliferation, migration and invasion of triple negative breast cancer cells are suppressed by berbamine via the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signaling pathways. Oncol Lett 2020; 21:70. [PMID: 33365081 PMCID: PMC7716707 DOI: 10.3892/ol.2020.12331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the second most common cause of cancer-associated mortality among women worldwide, and triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Berbamine (BBM) is a traditional Chinese medicine used for the treatment of leukopenia without any obvious side effects. Recent reports found that BBM has anti-cancer effects. The present study aimed to investigate the effects of BBM on TNBC cell lines and the underlying molecular mechanism. MDA-MB-231 cells and MCF-7 cells, two TNBC cell lines, were treated with various concentrations of BBM. A series of bioassays including MTT, colony formation, EdU staining, apoptosis, trypan blue dye, wound healing, transwell, ELISA and western blotting assays were performed. The results showed that BBM significantly inhibited cell proliferation of MDA-MB-231 cells (P<0.05; IC50=22.72 µM) and MCF-7 cells (P<0.05; IC50=20.92 µM). BBM (20 µM) decreased the apoptosis ratio (percentage of absorbance compared with the control group) by 28.4±3.3% (P<0.05) in MDA-MB-231 cells, and 62.4±24.6% (P<0.05) in MCF-7 cells. In addition, BBM inhibited cell migration and invasion of TNBC cells. Furthermore, the expression levels of PI3K, phosphorylated-Akt/Akt, COX-2, LOX, MDM2 and mTOR were downregulated by BBM, and the expression of p53 was upregulated by BBM. These results indicated that BBM may suppress the development of TNBC via regulation of the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signal pathways. Therefore, BBM might be used as a drug candidate for the treatment of TNBC in the future.
Collapse
Affiliation(s)
- Lili Liu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Jiadong Yan
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Ying Cao
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Yan Yan
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Xiang Shen
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Binbin Yu
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Li Tao
- Department of Pharmacy, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| | - Shusheng Wang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
8
|
Peng SY, Lin LC, Yang ZW, Chang FR, Cheng YB, Tang JY, Chang HW. Combined Treatment with Low Cytotoxic Ethyl Acetate Nepenthes Extract and Ultraviolet-C Improves Antiproliferation to Oral Cancer Cells via Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9090876. [PMID: 32948007 PMCID: PMC7555961 DOI: 10.3390/antiox9090876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet-C (UVC) irradiation provides an alternative radiotherapy to X-ray. UVC sensitizer from natural products may improve radiotherapy at low cytotoxic side effects. The aim of this study is to assess the regulation for oral cancer cell proliferation by a combined treatment of UVC and our previously reported anti-oral cancer natural product (ethyl acetate extract of Nepenthes adrianii × clipeata; EANA). The detailed possible UVC sensitizing mechanisms of EANA such as effects on cell proliferation, cell cycle, apoptosis, and DNA damage are investigated individually and in combination using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay, flow cytometry, and western blotting at low dose conditions. In a 24 h MTS assay, the low dose EANA (5 μg/mL) and low dose UVC (12 J/m2) individually show 80% and combinedly 57% cell proliferation in oral cancer Ca9-22 cells; but no cytotoxicity to normal oral HGF-1 cells. Mechanistically, low dose EANA and low dose UVC individually induce apoptosis (subG1 accumulation, pancaspase activation, and caspases 3, 8, 9), oxidative stress (reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential depletion), and DNA damage (γH2AX and 8-hydroxy-2′-deoxyguanosine). Moreover, the combined treatment (UVC/EANA) synergistically induces these changes. Combined low dose treatment-induced antiproliferation, apoptosis, oxidative stress, and DNA damage were suppressed by the ROS scavenger N-acetylcysteine. In conclusion, UVC/EANA shows synergistic antiproliferation, oxidative stress, apoptosis, and DNA damage to oral cancer cells in an oxidative stress-dependent manner. With the selective killing properties of low dose EANA and low dose UVC, EANA provides a novel UVC sensitizing agent to improve the anti-oral cancer therapy.
Collapse
Affiliation(s)
- Sheng-Yao Peng
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Foundation Medical Center, Tainan 71004, Taiwan;
- School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Zhe-Wei Yang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-B.C.)
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-R.C.); (Y.-B.C.)
| | - Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (S.-Y.P.); (Z.-W.Y.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-Y.T.); (H.-W.C.); Tel.: +886-7-312-1101 (ext. 8105) (J.-Y.T.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
9
|
Alexandru O, Sevastre AS, Castro J, Artene SA, Tache DE, Purcaru OS, Sfredel V, Tataranu LG, Dricu A. Platelet-Derived Growth Factor Receptor and Ionizing Radiation in High Grade Glioma Cell Lines. Int J Mol Sci 2019; 20:ijms20194663. [PMID: 31547056 PMCID: PMC6802357 DOI: 10.3390/ijms20194663] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 01/29/2023] Open
Abstract
Treatment of high grade gliomas (HGGs) has remained elusive due to their high heterogeneity and aggressiveness. Surgery followed by radiotherapy represents the mainstay of treatment for HGG. However, the unfavorable location of the tumor that usually limits total resection and the resistance to radiation therapy are the major therapeutic problems. Chemotherapy with DNA alkylating agent temozolomide is also used to treat HGG, despite modest effects on survival. Disregulation of several growth factor receptors (GFRs) were detected in HGG and receptor amplification in glioblastoma has been suggested to be responsible for heterogeneity propagation through clonal evolution. Molecularly targeted agents inhibiting these membrane proteins have demonstrated significant cytotoxicity in several types of cancer cells when tested in preclinical models. Platelet-derived growth factor receptors (PDGFRs) and associated signaling were found to be implicated in gliomagenesis, moreover, HGG commonly display a Platelet-derived growth factor (PDGF) autocrine pathway that is not present in normal brain tissues. We have previously shown that both the susceptibility towards PDGFR and the impact of the PDGFR inactivation on the radiation response were different in different HGG cell lines. Therefore, we decided to extend our investigation, using two other HGG cell lines that express PDGFR at the cell surface. Here, we investigated the effect of PDGFR inhibition alone or in combination with gamma radiation in 11 and 15 HGG cell lines. Our results showed that while targeting the PDGFR represents a good means of treatment in HGG, the combination of receptor inhibition with gamma radiation did not result in any discernable difference compared to the single treatment. The PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways are the major signaling pathways emerging from the GFRs, including PDGFR. Decreased sensitivity to radiation-induced cell death are often associated with redundancy in these pro-survival signaling pathways. Here we found that Phosphoinositide 3-kinases (PI3K), Extracellular-signal-regulated kinase 1/2 (ERK1/2), or c-Jun N-terminal kinase 1/2 (JNK1/2) inactivation induced radiosensitivity in HGG cells.
Collapse
Affiliation(s)
- Oana Alexandru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Ani-Simona Sevastre
- Department of Pharmacological Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Juan Castro
- Karolinska Institutet, Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska University Hospital, Z1:00, 171 76 Stockholm, Sweden.
| | - Stefan-Alexandru Artene
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Oana Stefana Purcaru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| | - Ligia Gabriela Tataranu
- Department of Neurosurgery, "Bagdasar-Arseni" Emergency Hospital, Soseaua Berceni 12, 041915 Bucharest, Romania.
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania.
| |
Collapse
|