1
|
Zhao Y, Liu X, Xiao K, Wang L, Li Y, Kan M, Jiang Z. Clinicopathological value of long non-coding RNA profiles in gastrointestinal stromal tumor. PeerJ 2021; 9:e11946. [PMID: 34557343 PMCID: PMC8420874 DOI: 10.7717/peerj.11946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been implicated in diagnosis and prognosis in various cancers. However, few lncRNA signatures have been established for prediction of gastrointestinal stromal tumors (GIST). We aimed to explore a lncRNA signature profile that associated with clinical relevance by mining data from Gene Expression Ominus (GEO) and Surveillance, Epidemiology, and End Results (SEER) Program. Methods Using a lncRNA-mining approach, we performed non-negative matrix factorization (NMF) consensus algorithm in Gastrointestinal stromal tumors (GISTs) cohorts (61 patients from GSE8167 and GSE17743) to cluster LncRNA expression profiles. Comparative markers selection, and Gene Set Enrichment Analysis (GSEA) algorithm were performed between distinct molecular subtypes of GIST. The survival rate of GIST patients from SEER stratified by gender were compared by Kaplan-Meier method and log-rank analysis. lncRNA-mRNA co-expression analysis was performed by Pearson correlation coefficients (PCC) using R package LINC. Somatic copy number alterations of GIST patients (GSE40966) were analyzed via web server GenePattern GISTIC2 algorithm. Results A total of four lncRNA molecular subtypes of GIST were identified with distinct biological pathways and clinical characteristics. LncRNA expression profiles well clustered the GIST samples into small size (<5 mm) and large size tumors (>5 mm), which is a fundamental index for GIST malignancy diagnosis. Several lncRNAs with abundant expression (LRRC75A-AS1, HYMAI, NEAT1, XIST and FTX) were closely associated with tumor size, which may suggest to be biomarkers for the GIST malignancy. Particularly, LRRC75A-AS1 was positively associated with tumor diameters and suggested an oncogene in GIST. Co-expression analysis suggested that chromosome region 17p11.2-p12 may contribute to the oncogenic process in malignant GIST. Interestingly, the gender had a strong influence on clustering by lncRNA expression profile. Data from the Surveillance, Epidemiology, and End Results (SEER) Program were further explored and 7983 patients who were diagnosed with GISTs from 1973 to 2014 were enrolled for analysis. The results also showed the favorable prognosis for female patients. The survival rate between male and female with GIST was statistically significant (P < 0.0001). Gene set enrichment analysis (GSEA) indicated distinct pathways between female and male, and malignant GIST was associated with several cancer metabolism and cell cycle associated pathways. Conclusions This lncRNAs-based classification for GISTs may provide a molecular classification applicable to individual GIST that has implications to influence lncRNA markers selection and prediction of tumor progression.
Collapse
Affiliation(s)
- Yan Zhao
- Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu Province, China
| | - Xinxin Liu
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Keshuai Xiao
- Department of General Surgery, Yangzhou Hongquan Hospital, Yangzhou, Jiangsu Province, China
| | - Liwen Wang
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yuping Li
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Mingyun Kan
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zhiwei Jiang
- Department of Gastrointestinal Surgery, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Liguori G, Cerrone M, De Chiara A, Tafuto S, de Bellis MT, Botti G, Di Bonito M, Cantile M. The Role of lncRNAs in Rare Tumors with a Focus on HOX Transcript Antisense RNA ( HOTAIR). Int J Mol Sci 2021; 22:ijms221810160. [PMID: 34576322 PMCID: PMC8466298 DOI: 10.3390/ijms221810160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Rare cancers are identified as those with an annual incidence of fewer than 6 per 100,000 persons and includes both epithelial and stromal tumors from different anatomical areas. The advancement of analytical methods has produced an accurate molecular characterization of most human cancers, suggesting a “molecular classification” that has allowed the establishment of increasingly personalized therapeutic strategies. However, the limited availability of rare cancer samples has resulted in very few therapeutic options for these tumors, often leading to poor prognosis. Long non coding RNAs (lncRNAs) are a class of non-coding RNAs mostly involved in tumor progression and drug response. In particular, the lncRNA HOX transcript antisense RNA (HOTAIR) represents an emergent diagnostic, prognostic and predictive biomarker in many human cancers. The aim of this review is to highlight the role of HOTAIR in rare cancers, proposing it as a new biomarker usable in the management of these tumors.
Collapse
Affiliation(s)
- Giuseppina Liguori
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Margherita Cerrone
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Annarosaria De Chiara
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Maura Tracey de Bellis
- Rehabilitation Medicine Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G. Pascale, 80131 Naples, Italy; (G.L.); (M.C.); (A.D.C.); (G.B.); (M.D.B.)
- Correspondence: ; Tel.: +39-08159031755; Fax: +39-0815903718
| |
Collapse
|
3
|
Integrated analysis of long non-coding RNAs and mRNAs associated with malignant transformation of gastrointestinal stromal tumors. Cell Death Dis 2021; 12:669. [PMID: 34218261 PMCID: PMC8254811 DOI: 10.1038/s41419-021-03942-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Malignant transformation of gastrointestinal stromal tumors (GISTs) is correlated with poor prognosis; however, the underlying biological mechanism is not well understood. In the present study, low-risk (LR) GISTs, GISTs categorized as high-risk based on tumor size (HBS), and on mitotic rate (HBM) were collected for RNA sequencing. Candidate hub lncRNAs were selected by Oncomine analysis. Expression of a selected hub lncRNA, DNM3OS, and its correlation with patients’ prognosis were analyzed using FISH staining, followed with the determination of function and underlying mechanism. Our results revealed a series of key pathways and hub lncRNAs involved in the malignant transformation of GISTs. Oncomine analysis revealed a tight association between clinical signatures and DNM3OS and suggested that DNM3OS is a hub lncRNA that is involved in the Hippo signaling pathway. In addition, DNM3OS was upregulated in HBS, HBM, and HBS/M GIST and correlated with worse prognosis in patients with GISTs. In addition, DNM3OS promoted GIST cell proliferation and mitosis by regulating the expression of GLUT4 and CD36. Collectively, these results improve our understanding of the malignant transformation of GISTs and unveil a series of hub lncRNAs in GISTs.
Collapse
|
4
|
Mezlini AM, Das S, Goldenberg A. Finding associations in a heterogeneous setting: statistical test for aberration enrichment. Genome Med 2021; 13:68. [PMID: 33892787 PMCID: PMC8066476 DOI: 10.1186/s13073-021-00864-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Most two-group statistical tests find broad patterns such as overall shifts in mean, median, or variance. These tests may not have enough power to detect effects in a small subset of samples, e.g., a drug that works well only on a few patients. We developed a novel statistical test targeting such effects relevant for clinical trials, biomarker discovery, feature selection, etc. We focused on finding meaningful associations in complex genetic diseases in gene expression, miRNA expression, and DNA methylation. Our test outperforms traditional statistical tests in simulated and experimental data and detects potentially disease-relevant genes with heterogeneous effects.
Collapse
Affiliation(s)
- Aziz M. Mezlini
- Harvard Medical School, Boston, USA
- Department of Neurology, Massachusetts General Hospital, Boston, USA
- Department of Computer Science, University of Toronto, Toronto, Canada
- Genetics and genome biology, Hospital for sick children, Toronto, Canada
- The Vector Institute, Toronto, Canada
- Evidation Health, Inc., San Mateo, CA USA
| | - Sudeshna Das
- Harvard Medical School, Boston, USA
- Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Anna Goldenberg
- Department of Computer Science, University of Toronto, Toronto, Canada
- Genetics and genome biology, Hospital for sick children, Toronto, Canada
- The Vector Institute, Toronto, Canada
- CIFAR, Toronto, Canada
| |
Collapse
|
5
|
Fudalej MM, Badowska-Kozakiewicz AM. Improved understanding of gastrointestinal stromal tumors biology as a step for developing new diagnostic and therapeutic schemes. Oncol Lett 2021; 21:417. [PMID: 33841578 DOI: 10.3892/ol.2021.12678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
A gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the human gastrointestinal tract, with an estimated incidence of 10-15 per 1 million per year. While preparing holistic care for patients with GIST diagnosis, scientists might face several difficulties - insufficient risk stratification, acquired or secondary resistance to imatinib, or the need for an exceptional therapy method associated with wild-type tumors. This review summarizes recent advances associated with GIST biology that might enhance diagnostic and therapeutic strategies. New molecules might be incorporated into risk stratification schemes due to their proven association with outcomes; however, further research is required. Therapies based on the significant role of angiogenesis, immunology, and neural origin in the GIST biology could become a valuable enhancement of currently implemented treatment schemes. Generating miRNA networks that would predict miRNA regulatory functions is a promising approach that might help in better selection of potential biomarkers and therapeutical targets in cancer, including GISTs.
Collapse
Affiliation(s)
- Marta Magdalena Fudalej
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | |
Collapse
|
6
|
Non-Coding RNAs, a Novel Paradigm for the Management of Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:ijms21186975. [PMID: 32972022 PMCID: PMC7555847 DOI: 10.3390/ijms21186975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies found in the gastrointestinal tract. At a molecular level, most GISTs are characterized by gain-of-function mutations in V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRA), leading to constitutive activated signaling through these receptor tyrosine kinases, which drive GIST pathogenesis. In addition to surgery, treatment with the tyrosine kinase inhibitor imatinib forms the mainstay of GIST treatment, particularly in the advanced setting. Nevertheless, the majority of GISTs develop imatinib resistance. Biomarkers that indicate metastasis, drug resistance and disease progression early on could be of great clinical value. Likewise, novel treatment strategies that overcome resistance mechanisms are equally needed. Non-coding RNAs, particularly microRNAs, can be employed as diagnostic, prognostic or predictive biomarkers and have therapeutic potential. Here we review which non-coding RNAs are deregulated in GISTs, whether they can be linked to specific clinicopathological features and discuss how they can be used to improve the clinical management of GISTs.
Collapse
|
7
|
Xiang L, Huang X, Wang S, Ou H, Chen Z, Hu Z, Huang Y, Li X, Yuan Y, Yang D. Deficiency of pseudogene UPAT leads to hepatocellular carcinoma progression and forms a positive feedback loop with ZEB1. Cancer Sci 2020; 111:4102-4117. [PMID: 32808348 PMCID: PMC7648020 DOI: 10.1111/cas.14620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common disease worldwide. Accumulating reports have evidenced the internal connection between epithelial‐mesenchymal transition (EMT) and cancer stem cells (CSCs), as well as their significance in metastasis and post–operative recurrence. In this study, we investigated an interesting ubiquitin‐proteasome pathway associated pseudogene of AOC4, also known as UPAT, and showed that it was downregulated in 39.78% (37/93) of patients with hepatitis B virus (HBV)‐related HCC. Downregulation of UPAT was associated with multiple worse clinicopathological parameters, as well as decreased recurrence‐free survival (RFS). In vitro and in vivo assays found that overexpression of UPAT significantly suppressed cellular migration, invasion, EMT processes, and CSC properties. Mechanistic studies showed that UPAT promoted ZEB1 degradation via a ubiquitin‐proteasome pathway and, in contrast, ZEB1 transcriptionally suppressed UPAT by binding to multiple E‐box (CACCTG) elements in the promoter region. Moreover, UPAT was negatively correlated with ZEB1 protein in HCC tissues, their combined expression discriminated RFS outcomes for patients with HBV‐related HCC. These data on the UPAT‐ZEB1 circuit‐mediated pathway will further knowledge on EMT and CSCs, and may help to develop novel therapeutic approaches for the prevention of HCC metastasis.
Collapse
Affiliation(s)
- Leyang Xiang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Siqi Wang
- Department of gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Zhanjun Chen
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of General Surgery, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, China
| | - Zhigang Hu
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianghong Li
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Dinghua Yang
- Unit of Hepatobiliary Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Stefanou IK, Gazouli M, Zografos GC, Toutouzas KG. Role of non-coding RNAs in pathogenesis of gastrointestinal stromal tumors. World J Meta-Anal 2020; 8:233-244. [DOI: 10.13105/wjma.v8.i3.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are considered the model solid malignancies of targeted therapy after the discovery of imatinib effectiveness against their tyrosine kinase inhibitors. Non-coding RNAs are molecules with no protein coding capacity that play crucial role to several biological steps of normal cell proliferation and differentiation. When the expression of these molecules found to be altered it seems that they affect the process of carcinogenesis in multiple ways, such as proliferation, apoptosis, differentiation, metastasis, and drug resistance. This review aims to provide an overview of the latest research papers and summarize the current evidence about the role of non-coding RNAs in pathogenesis of GISTs, including their potential clinical applications.
Collapse
Affiliation(s)
- Ioannis K Stefanou
- Department of Surgery, Hippocration Hospital Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Georgios C Zografos
- 1st Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Konstantinos G Toutouzas
- 1st Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
9
|
Li F, Rong T, Cao G, Zhai C, Li Q, Gong R, Li G. AOC4P suppresses viability and invasion and induces apoptosis in NSCLC cells by inhibiting the Wnt/β-catenin pathway. Chem Biol Interact 2020; 325:109110. [PMID: 32325081 DOI: 10.1016/j.cbi.2020.109110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023]
Abstract
Increasing studies have well-documented the involvement of numerous lncRNAs in regulating the malignant phenotypes of various tumors including non-small cell lung cancer (NSCLC) cells. However, up to date, the effects and mechanism of lncRNA amine oxidase, copper containing 4, pseudogene (AOC4P) in NSCLC progression remain undefined. AOC4P expression in NSCLC cells was detected by qRT-PCR. The protein levels of Wnt/β-catenin pathway-related proteins, matrix metallopeptidase (MMP)-2, and MMP-9 were examined by Western blot. The effects of AOC4P or combined with Wnt agonist BML-284 on the malignant phenotypes in NSCLC cells were explored by CCK-8, Transwell invasion assay, flow cytometry analysis and caspase-3/7 activity. AOC4P was lowly expressed in NSCLC samples and cells. Overexpression of AOC4P inhibited viability, the expression of MMP-2 and MMP-9, and invasion of NSCLC cells. Apoptosis and caspase-3/7 activity were suppressed in response to AOC4P overexpression in NSCLC cells. AOC4P overexpression suppressed tumor growth in a xenograft mouse model. Activation of the Wnt/β-catenin pathway by BML-284 abolished the effects of AOC4P overexpression on cell viability, invasion and apoptosis in NSCLC cells. In conclusion, AOC4P overexpression suppresses viability and invasion and induces apoptosis in NSCLC cells via inhibition of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fengbo Li
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Tao Rong
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, 223100, China
| | - Gang Cao
- Department of Respiratory Medicine, Hongze District People's Hospital, Huai'an, 223100, China
| | - Chaoshuan Zhai
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Qian Li
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Rui Gong
- Department of Respiratory Medicine, Nanshi Hospital, Nanyang, 473065, China
| | - Gang Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China.
| |
Collapse
|