1
|
Shi TT, Huang Y, Li Y, Dai XL, He YH, Ding JC, Ran T, Shi Y, Yuan Q, Li WJ, Liu W. MAVI1, an endoplasmic reticulum-localized microprotein, suppresses antiviral innate immune response by targeting MAVS on mitochondrion. SCIENCE ADVANCES 2023; 9:eadg7053. [PMID: 37656786 PMCID: PMC10854431 DOI: 10.1126/sciadv.adg7053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Pattern recognition receptor-mediated innate immunity is critical for host defense against viruses. A growing number of coding and noncoding genes are found to encode microproteins. However, the landscape and functions of microproteins in responsive to virus infection remain uncharacterized. Here, we systematically identified microproteins that are responsive to vesicular stomatitis virus infection. A conserved and endoplasmic reticulum-localized membrane microprotein, MAVI1 (microprotein in antiviral immunity 1), was found to interact with mitochondrion-localized MAVS protein and inhibit MAVS aggregation and type I interferon signaling activation. The importance of MAVI1 was highlighted that viral infection was attenuated and survival rate was increased in Mavi1-knockout mice. A peptide inhibitor targeting the interaction between MAVI1 and MAVS activated the type I interferon signaling to defend viral infection. Our findings uncovered that microproteins play critical roles in regulating antiviral innate immune responses, and targeting microproteins might represent a therapeutic avenue for treating viral infection.
Collapse
Affiliation(s)
- Tao-tao Shi
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ying Huang
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ying Li
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Xiang-long Dai
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Yao-hui He
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Jian-cheng Ding
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Ting Ran
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), KaiYuan Road, Guangzhou, Guangdong 510530, China
| | - Yang Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen-juan Li
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang’an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
3
|
Zhang M, Ma J, Guo Q, Ding S, Wang Y, Pu H. CD8 + T Cell-Associated Gene Signature Correlates With Prognosis Risk and Immunotherapy Response in Patients With Lung Adenocarcinoma. Front Immunol 2022; 13:806877. [PMID: 35273597 PMCID: PMC8902308 DOI: 10.3389/fimmu.2022.806877] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
The presence of infiltrating CD8+ T lymphocytes in the tumor microenvironment of lung adenocarcinoma (LUAD) is correlated with improved patient prognosis, but underlying regulatory mechanisms remain unknown. To identify biomarkers to improve early diagnosis and treatment of LUAD, we downloaded 13 immune cell line-associated datasets from the GEO database. We identified CD8+ T cell-associated genes via weighted correlation network analysis. We constructed molecular subtypes based on CD8+ T cell-associated genes and constructed a multi-gene signature. We identified 252 CD8+ T cell-associated genes significantly enriched in immune function-related pathways and two molecular subtypes of LUAD (immune cluster 1 [IC1] and IC2) using our CD8+ T cell-associated gene signature. Patients with the IC2 subtype had a higher tumor mutation burden and lower immune infiltration scores, whereas those with the IC1 subtype were more sensitive to immune checkpoint inhibitors. Prioritizing the top candidate genes to construct a 10-gene signature, we validated our model using independent GSE and TCGA datasets to confirm its robustness and stable prognostic ability. Our risk model demonstrated good predictive efficacy using the Imvigor210 immunotherapy dataset. Thus, we established a novel and robust CD8+ T cell-associated gene signature, which could help assess prognostic risk and immunotherapy response in LUAD patients.
Collapse
Affiliation(s)
- Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Clinical Trial Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qiuyue Guo
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuang Ding
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haihong Pu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
5
|
Ni H, Ji D, Huang Z, Li J. SMAGP knockdown inhibits the malignant phenotypes of glioblastoma cells by inactivating the PI3K/Akt pathway. Arch Biochem Biophys 2020; 695:108628. [PMID: 33049294 DOI: 10.1016/j.abb.2020.108628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
Small trans-membrane and glycosylated protein (SMAGP), a novel small trans-membrane glycoprotein, is reported to be upregulated in multiple cancers and involved in tumor development. However, little is known about its role in the development of glioblastoma (GBM). GEPIA database was used to analyze SMAGP expression and evaluate the prognostic value of SMAGP in GBM. GO and KEGG pathway enrichment analyses were used to predict the biological functions and pathways of SMAGP and 948 SMAGP-correlated genes using DAVID database. Cell viability, colony formation ability, apoptosis, and invasion were evaluated by MTT, colony formation assay, flow cytometry analysis, and Transwell invasion assay, respectively. Western blot was applied to detect the expression of SMAGP, matrix metalloproteinase (MMP)-2, and MMP-9 and analyze the changes of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Results showed that SMAGP was upregulated and correlated with poor prognosis in GBM. Functional annotation analysis revealed that SMAGP and 948 SMAGP-correlated genes were primarily associated with cell adhesion and PI3K/Akt pathway. SMAGP interference inhibited cell viability and colony formation ability and promoted apoptosis in GBM cells. Moreover, SMAGP interference inhibited GBM cell invasion and suppressed MMP-2 and MMP-9 expression. Additionally, SMAGP silencing inhibited the PI3K/Akt pathway in GBM cells. Overexpression of Akt abolished the effects of SMAGP knockdown on the malignant phenotypes of GBM cells. In conclusion, SMAGP silencing inhibited the malignant phenotypes of GBM cells by inactivating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hongzao Ni
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Zhixiong Huang
- Department of Neurology, Nanshi Hospital, Nanyang, 473065, China
| | - Jing Li
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, 223002, China.
| |
Collapse
|
6
|
Wang Y, Cao P, Alshwmi M, Jiang N, Xiao Z, Jiang F, Gu J, Wang X, Sun X, Li S. GPX2 suppression of H 2O 2 stress regulates cervical cancer metastasis and apoptosis via activation of the β-catenin-WNT pathway. Onco Targets Ther 2019; 12:6639-6651. [PMID: 31695405 PMCID: PMC6707354 DOI: 10.2147/ott.s208781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Increasing evidence suggests that glutathione peroxidase 2 (GPX2) plays important roles in the tumorigenesis and progression of various human cancers, such as colorectal carcinomas and lung adenocarcinomas. However, the role of GPX2 in cervical cancer is unclear. In this study, we identified the role of GPX2 in cervical cancer tissues and cell lines. MATERIALS AND METHODS The basal mRNA and protein expression of GPX2 in cervical cancer cells and a series of key molecules in the epithelial to mesenchymal transition (EMT) and WNT/β-catenin pathways were examined via real time fluorescence quantitative PCR (qRT-PCR) and Western blot assays. The biological phenotype of the cervical cancer cell lines was detected by the cloning formation and transwell assays, and intracellular reactive oxygen species (ROS) levels were detected by flow cytometry. Finally, the GPX2 expression level in 100 clinical cervical tissues was examined by immunohistochemistry. RESULTS We found that GPX2 was highly expressed in cervical cancer tissues compared to normal individuals and promoted the proliferation and metastasis of cervical cancer cells, and this promotion correlated with the activation of EMT and WNT/β-catenin signaling in vitro. GPX2 was determined to reduce apoptotic damage by reducing hydroperoxides. According to the characteristics and verification of GPX2, this series of phenotypes is clearly related to oxidative stress in cells. Furthermore, we verified that GPX2 was highly expressed in cervical cancer tissues and promoted the metastasis of cervical cancer. CONCLUSION In summary, we found that GPX2 was highly expressed in cervical cancer cells and promoted the proliferation and metastasis of cervical cancer by affecting oxidative stress. Our study provides a new target for the clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yingxin Wang
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Penglong Cao
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Mohammed Alshwmi
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Nan Jiang
- Department of Pathology, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Zhen Xiao
- Department of Gynecology, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Fengquan Jiang
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Juebin Gu
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Xiaonan Wang
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Xiaoye Sun
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| | - Shijun Li
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian116011, People’s Republic of China
| |
Collapse
|