1
|
Wang G, Shen X, Jin W, Song C, Dong M, Zhou Z, Wang X. Elucidating the role of S100A10 in CD8 + T cell exhaustion and HCC immune escape via the cPLA2 and 5-LOX axis. Cell Death Dis 2024; 15:573. [PMID: 39117605 PMCID: PMC11310305 DOI: 10.1038/s41419-024-06895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with a complex immune evasion mechanism posing a challenge to treatment. The role of the S100A10 gene in various cancers has garnered significant attention. This study aims to elucidate the impact of S100A10 on CD8+ T cell exhaustion via the cPLA2 and 5-LOX axis, thereby elucidating its role in immune evasion in HCC. By analyzing the HCC-related data from the GEO and TCGA databases, we identified differentially expressed genes associated with lipid metabolism and developed a prognostic risk model. Subsequently, through RNA-seq and PPI analyses, we determined vital lipid metabolism genes and downstream factors S100A10, ACOT7, and SMS, which were significantly correlated with CD8+ T cell infiltration. Given the most significant expression differences, we selected S100A10 for further investigation. Both in vitro and in vivo experiments were conducted, including co-culture experiments of CD8+ T cells with MHCC97-L cells, Co-IP experiments, and validation in an HCC mouse model. S100A10 was significantly overexpressed in HCC tissues and potentially regulates CD8+ T cell exhaustion and lipid metabolism reprogramming through the cPLA2 and 5-LOX axis. Silencing S100A10 could inhibit CD8+ T cell exhaustion, further suppressing immune evasion in HCC. S100A10 may activate the cPLA2 and 5-LOX axis, initiating lipid metabolism reprogramming and upregulating LTB4 levels, thus promoting CD8+ T cell exhaustion in HCC tissues, facilitating immune evasion by HCC cells, ultimately impacting the growth and migration of HCC cells. This research highlights the critical role of S100A10 via the cPLA2 and 5-LOX axis in immune evasion in HCC, providing new theoretical foundations and potential targets for diagnosing and treating HCC.
Collapse
Affiliation(s)
- Ganggang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaowei Shen
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
| | - Wenzhi Jin
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chao Song
- Department of General Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, QingPu District Central Hospital Shanghai, No. 1158, Gong Yuan Dong Road, Shanghai, 201700, China
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhijie Zhou
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Xiaoliang Wang
- Department of Hepatobiliary Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
2
|
Kito Y, Kachi K, Yoshida M, Hori Y, Kato A, Sahashi H, Toyohara T, Kuno K, Adachi A, Urakabe K, Kataoka H. Potential of Anti-Leukotriene Drugs as New Therapeutic Agents for Inhibiting Cholangiocarcinoma Progression. Molecules 2024; 29:3379. [PMID: 39064957 PMCID: PMC11280175 DOI: 10.3390/molecules29143379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a cancer with a poor prognosis due to difficulties in diagnosis and limited treatment options, highlighting the urgent need for new targeted therapies. In a clinical setting, we found that leukotriene levels in bile were higher than in serum. Immunohistochemical analysis of surgically resected samples also revealed that CysLT receptor 1 (CysLTR1) was more highly expressed in CCA than in normal bile duct tissue, prompting us to investigate leukotriene as a potential therapeutic target in CCA. In vitro studies using CCA cell lines expressing CysLTR1 showed that leukotriene D4, a major ligand of CysLTR1, promoted cell proliferation, with increased phosphorylation of AKT and extracellular signal-regulated kinase 1/2 (ERK1/2). Additionally, treatment with two clinically available anti-allergic drugs-zileuton, an inhibitor of CysLT formation, and montelukast, a CysLTR1 inhibitor-had inhibitory effects on cell proliferation and migratory capacity, accompanied by the reduced phosphorylation of AKT and ERK1/2. Furthermore, the simultaneous administration of both drugs synergistically enhanced the inhibitory effect on cell proliferation. Our study suggests that use of these drugs may represent a novel approach to treat CCA through drug repositioning.
Collapse
Affiliation(s)
- Yusuke Kito
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Kenta Kachi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
- Department of Gastroenterology, Gifu Prefectural Tajimi Hospital, Tajimi 507-8522, Japan
| | - Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Yasuki Hori
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Akihisa Kato
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Hidenori Sahashi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Tadashi Toyohara
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Kayoko Kuno
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Akihisa Adachi
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Kenji Urakabe
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.K.); (M.Y.); (Y.H.); (A.K.); (H.S.); (T.T.); (K.K.); (A.A.); (K.U.); (H.K.)
| |
Collapse
|
3
|
Chen J, Tang Y, Qin D, Yu X, Tong H, Tang C, Tang Z. ALOX5 acts as a key role in regulating the immune microenvironment in intrahepatic cholangiocarcinoma, recruiting tumor-associated macrophages through PI3K pathway. J Transl Med 2023; 21:923. [PMID: 38124204 PMCID: PMC10734103 DOI: 10.1186/s12967-023-04804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is poorly treated due to the presence of an inhibitory immune microenvironment. Tumor-associated macrophages (TAM) are an important component of TME. ALOX5 is an important lipid metabolism enzyme in cancer progression, but the mechanism by which it regulates TAM to promote ICC progression is unknown. The aim of this study was to investigate the potential mechanism of TAM regulation by ALOX5 and the translational effect of targeting ALOX5. METHODS In this study, we investigated the association between the spatial localization of epithelial cells and TAMs by combining scRNA-seq analysis with multiplex immunofluorescence analysis. Through bulk sequencing analysis and spatial analysis, lipid metabolism genes closely related to TAM infiltration were screened. In vitro co-culture model was constructed to verify that ALOX5 and its downstream metabolite LTB4 promote M2 macrophage migration. Bulk sequencing after co-culture combined with single-cell analysis was performed to identify key pathways for up-regulation of M2 macrophage migration. Finally, the effect of CSF1R inhibitor (PLX3397) combined with ALOX5 inhibitor (Zileuton) in vivo was investigated by by xenograft tumor formation experiment in nude mice. RESULTS ALOX5 in ICC cells was a key lipid metabolism gene affecting the infiltration of M2 macrophages in TME. Mechanically, LTB4, a metabolite downstream of ALOX5, recruited M2 macrophages to migrate around tumor cells by binding to BLT1/BLT2 and activating the PI3K pathway, which ultimately lead to the promotion of ICC progression. Targeting CSF1R in combination with ALOX5 inhibitor effectively reduced tumor volume and M2 macrophage infiltration abundance. CONCLUSION In ICC, LTB4, a metabolite secreted by ALOX5 of epithelial cells, binded to BLT1/BLT2 on TAM surface to activate PI3K pathway and promote TAM migration, thus promoting ICC progression. Targeting CSF1R in combination with ALOX5 inhibitor for ICC is a promising combination therapy modality.
Collapse
Affiliation(s)
- Jialu Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yue Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Delong Qin
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chengwei Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China.
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
4
|
Hu WM, Liu SQ, Zhu KF, Li W, Yang ZJ, Yang Q, Zhu ZC, Chang J. The ALOX5 inhibitor Zileuton regulates tumor-associated macrophage M2 polarization by JAK/STAT and inhibits pancreatic cancer invasion and metastasis. Int Immunopharmacol 2023; 121:110505. [PMID: 37348233 DOI: 10.1016/j.intimp.2023.110505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
5-lipoxygenase (encoded by ALOX5) plays an important role in immune regulation. Zileuton is currently the only approved ALOX5 inhibitor. However, the mechanisms of ALOX5 and Zileuton in progression of pancreatic cancer remain unclear. Therefore, we investigated the effects of Zileuton on tumor-associated macrophage M2 polarization and pancreatic cancer invasion and metastasis, both in vivo and in vitro. In bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analyses, we found a significant association between elevated levels of ALOX5 and poor survival, adverse stages, M2 macrophage infiltration, and the activation of JAK/STAT pathways in macrophages. In clinical samples, immunofluorescence, quantitative real-time PCR and immunohistochemical results verified the high expression of ALOX5 in pancreatic cancer, primarily in macrophages. We constructed PANC-1 human pancreatic cancer cells and macrophages overexpressing ALOX5 using lentivirus. In PANC-1 pancreatic cancer cells, low-dose Zileuton inhibited PANC-1 cell invasion and migration by blocking ALOX5. In macrophages, ALOX5 induced the M2-like phenotype through the JAK/STAT pathway and promoted the chemotaxis of macrophages towards PANC-1 cells, while Zileuton can inhibit these effects. We constructed the nude mouse model of in situ transplantation tumor of pancreatic cancer. After treatment with Zileuton, the mice showed increased survival rates and reduced liver metastasis. These findings indicate that ALOX5 regulates tumor-associated macrophage M2 polarization via the JAK/STAT pathway and promotes invasion and metastasis in pancreatic cancer. Zileuton can inhibit these effects by inhibiting ALOX5. These results provide a theoretical basis for the potential use of Zileuton in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wei-Min Hu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Si-Qing Liu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Kong-Fan Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Wei Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhi-Jian Yang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Qiang Yang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhong-Chao Zhu
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| | - Jian Chang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Zhong X, Chen R. Detection of Ferroptosis by Immunohistochemistry and Immunofluorescence. Methods Mol Biol 2023; 2712:211-222. [PMID: 37578709 DOI: 10.1007/978-1-0716-3433-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a type of regulated cell death driven by oxidative damage, characterized by iron overload and lipid peroxidation, and regulated by a network of distinct molecules and organelles. Impaired ferroptotic response is implicated in multiple physiological and pathological processes, including tumorigenesis, neurodegeneration, and ischemia-reperfusion damage. Classical techniques of immunohistochemistry (IHC) and immunofluorescence (IF) can be employed to exhibit antigen expression and location in tissues observed with microscopy, making them powerful tools in studying the ferroptosis process. In this chapter, we introduce commonly used protocols and summarize typical markers used in IHC and IF to monitor ferroptosis.
Collapse
Affiliation(s)
- Xiao Zhong
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Loilome W, Namwat N, Jusakul A, Techasen A, Klanrit P, Phetcharaburanin J, Wangwiwatsin A. The Hallmarks of Liver Fluke Related Cholangiocarcinoma: Insight into Drug Target Possibility. Recent Results Cancer Res 2023; 219:53-90. [PMID: 37660331 DOI: 10.1007/978-3-031-35166-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor of the biliary tree that is classified into three groups based on its anatomic location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). Perihilar CCA is the most common type and accounts for 50-60% of CCA cases. It is followed by distal CCA and then intrahepatic CCA that account for 20-30% and 10-20% of cases, respectively. This chapter discusses the hallmarks of liver fluke related CCA and explores insights into drug target possibilities.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Nisana Namwat
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
7
|
Kast RE, Alfieri A, Assi HI, Burns TC, Elyamany AM, Gonzalez-Cao M, Karpel-Massler G, Marosi C, Salacz ME, Sardi I, Van Vlierberghe P, Zaghloul MS, Halatsch ME. MDACT: A New Principle of Adjunctive Cancer Treatment Using Combinations of Multiple Repurposed Drugs, with an Example Regimen. Cancers (Basel) 2022; 14:2563. [PMID: 35626167 PMCID: PMC9140192 DOI: 10.3390/cancers14102563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022] Open
Abstract
In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.
Collapse
Affiliation(s)
| | - Alex Alfieri
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| | - Hazem I. Assi
- Naef K. Basile Cancer Center, American University of Beirut, Beirut 1100, Lebanon;
| | - Terry C. Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Ashraf M. Elyamany
- Oncology Unit, Hemato-Oncology Department, SECI Assiut University Egypt/King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Maria Gonzalez-Cao
- Translational Cancer Research Unit, Dexeus University Hospital, 08028 Barcelona, Spain;
| | | | - Christine Marosi
- Clinical Division of Medical Oncology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| | - Michael E. Salacz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA;
| | - Iacopo Sardi
- Department of Pediatric Oncology, Meyer Children’s Hospital, Viale Pieraccini 24, 50139 Florence, Italy;
| | - Pieter Van Vlierberghe
- Department of Biomolecular Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium;
| | - Mohamed S. Zaghloul
- Children’s Cancer Hospital & National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Marc-Eric Halatsch
- Department of Neurosurgery, Cantonal Hospital of Winterthur, 8400 Winterthur, Switzerland; (A.A.); (M.-E.H.)
| |
Collapse
|
8
|
Chang YC, Li CH, Chan MH, Chen MH, Yeh CN, Hsiao M. Regorafenib inhibits epithelial-mesenchymal transition and suppresses cholangiocarcinoma metastasis via YAP1-AREG axis. Cell Death Dis 2022; 13:391. [PMID: 35449153 PMCID: PMC9023529 DOI: 10.1038/s41419-022-04816-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
Cholangiocarcinoma (CCA) is a subtype of bile duct cancer usually diagnosed late with a low survival rate and no satisfactorily systemic treatment. Recently, regorafenib has been accepted as a second-line treatment for CCA patients. In this study, we investigated the potential signal transduction pathways mediated by regorafenib. We established a transcriptomic database for regorafenib-treated CCA cells using expression microarray chips. Our data indicate that regorafenib inhibits yes-associated protein 1 (YAP1) activity in various CCA cells. In addition, we demonstrated that YAP1 regulates epithelial-mesenchymal transition (EMT)-related genes, including E-cadherin and SNAI2. We further examined YAP1 activity, phosphorylation status, and expression levels of YAP1 downstream target genes in the regorafenib model. We found that regorafenib dramatically suppressed these events in CCA cells. Moreover, in vivo results revealed that regorafenib could significantly inhibit lung foci formation and tumorigenicity. Most importantly, regorafenib and amphiregulin (AREG) neutralize antibody exhibited synergistic effects against CCA cells. In a clinical setting, patients with high YAP1 and EMT expression had a worse survival rate than patients with low YAP1, and EMT expression did. In addition, we found that YAP1 upregulated the downstream target amphiregulin in CCA. Our findings suggest that AREG neutralizing antibody antibodies combined with regorafenib can reverse the CCA metastatic phenotype and EMT in vitro and in vivo. These findings provide novel therapeutic strategies to combat the metastasis of CCA.
Collapse
|
9
|
Blogowski W, Dolegowska K, Deskur A, Dolegowska B, Starzynska T. Lipoxins and Resolvins in Patients With Pancreatic Cancer: A Preliminary Report. Front Oncol 2022; 11:757073. [PMID: 35087747 PMCID: PMC8787076 DOI: 10.3389/fonc.2021.757073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Eicosanoids are bioactive lipids derived from arachidonic acid, which have emerged as key regulators of a wide variety of pathophysiological processes in recent times and are implicated as mediators of gastrointestinal cancer. In this study, we investigated the systemic levels of lipoxygenase (LOX)-derived lipoxin A4 and B4, together with resolvin D1 and D2 in patients with pancreatic adenocarcinoma (n = 68), as well as in healthy individuals (n = 32). Systemic concentrations of the aforementioned immunoresolvents were measured using an enzyme-linked immunosorbent assay (ELISA). In this study, we observed that compared with concentrations in healthy individuals, the peripheral concentrations of the aforementioned eicosanoids were significantly elevated (2- to 10-fold) in patients with pancreatic cancer (in all cases p<0.00001). No significant association was observed between eicosanoid levels and the TNM clinical staging. Furthermore, we observed no significant differences in concentrations of the analyzed bioactive lipids between patients diagnosed with early-stage (TNM stage I-II) and more advanced disease (TNM stage III-IV). Receiver operating characteristic (ROC) curve analysis of each aforementioned immunoresolvent showed area under the curve values ranging between 0.79 and 1.00. Sensitivity, specificity, as well as positive and negative predictive values of the eicosanoids involved in the detection/differentiation of pancreatic adenocarcinoma ranged between 56.8% and 100%. In summary, our research is the first study that provides clinical evidence to support a systemic imbalance in LOX-derived lipoxins and resolvins as the mechanism underlying the pathogenesis of pancreatic adenocarcinoma. This phenomenon occurs regardless of the clinical TNM stage of the disease. Furthermore, our study is the first to preliminarily highlight the role of peripheral levels of immunoresolvents, particularly resolvin D1, as potential novel biomarkers of pancreatic cancer in humans.
Collapse
Affiliation(s)
- Wojciech Blogowski
- Institute of Medical Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Katarzyna Dolegowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Anna Deskur
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Barbara Dolegowska
- Department of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Teresa Starzynska
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
10
|
Aydin B, Arslan S, Bayraklı F, Karademir B, Arga KY. MicroRNA-Mediated Drug Repurposing Unveiled Potential Candidate Drugs for Prolactinoma Treatment. Neuroendocrinology 2022; 112:161-173. [PMID: 33706313 DOI: 10.1159/000515801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Prolactinomas, also called lactotroph adenomas, are the most encountered type of hormone-secreting pituitary neuroendocrine tumors in the clinic. The preferred first-line therapy is a medical treatment with dopamine agonists (DAs), mainly cabergoline, to reduce serum prolactin levels, tumor volume, and mass effect. However, in some cases, patients have displayed DA resistance with aggressive tumor behavior or are faced with recurrence after drug withdrawal. Also, currently used therapeutics have notorious side effects and impair the life quality of the patients. METHODS Since the amalgamation of clinical and laboratory data besides tumor histopathogenesis and transcriptional regulatory features of the tumor emerges to exhibit essential roles in the behavior and progression of prolactinomas; in this work, we integrated mRNA- and microRNA (miRNA)-level transcriptome data that exploit disease-specific signatures in addition to biological and pharmacological data to elucidate a rational prioritization of pathways and drugs in prolactinoma. RESULTS We identified 8 drug candidates through drug repurposing based on mRNA-miRNA-level data integration and evaluated their potential through in vitro assays in the MMQ cell line. Seven repurposed drugs including 5-fluorocytosine, nortriptyline, neratinib, puromycin, taxifolin, vorinostat, and zileuton were proposed as potential drug candidates for the treatment of prolactinoma. We further hypothesized possible mechanisms of drug action on MMQ cell viability through analyzing the PI3K/Akt signaling pathway and cell cycle arrest via flow cytometry and Western blotting. DISCUSSION We presented the transcriptomic landscape of prolactinoma through miRNA and mRNA-level data integration and proposed repurposed drug candidates based on this integration. We validated our findings through testing cell viability, cell cycle phases, and PI3K/Akt protein expressions. Effects of the drugs on cell cycle phases and inhibition of the PI3K/Akt pathway by all drugs gave us promising output for further studies using these drugs in the treatment of prolactinoma. This is the first study that reports miRNA-mediated repurposed drugs for prolactinoma treatment via in vitro experiments.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Sema Arslan
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Fatih Bayraklı
- Department of Neurosurgery, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Neurological Sciences, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | | |
Collapse
|
11
|
Li L, Xiao Y, Xu Z, Wang S. Zileuton inhibits arachidonate-5-lipoxygenase to exert antitumor effects in preclinical cervical cancer models. Cancer Chemother Pharmacol 2021; 88:953-960. [PMID: 34477945 DOI: 10.1007/s00280-021-04343-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Inhibitors of arachidonate lipoxygenase 5 (ALOX5) exhibit anticancer activity. Zileuton is an FDA-approved drug for treating asthma and an ALOX5 inhibitor. This study evaluated the efficacy of zileuton in cervical cancer, determined the molecular mechanism of action, and assessed ALOX5 expression in cervical cancer patients. METHODS The effects of zileuton were evaluated using cervical cancer cell lines and xenograft mouse models. Loss-of-function analysis of ALOX5 was performed using siRNA. The levels of ALOX5 and 5-HETE were determined using immunohistochemistry and ELISA. RESULTS Zileuton resulted in cell proliferation inhibition and apoptosis induction in a dose-dependent manner, regardless of cellular origin or HPV infection. In two independent cervical cancer xenograft mouse models, zileuton at nontoxic doses significantly prevented tumor formation and decreased tumor growth. Zileuton acts on cervical cancer cells by inhibiting the ALOX5-5-HETE axis. Of note, ALOX5-5-HETE was significantly upregulated in cervical cancer compared with normal tissue. Inhibition of ALOX5 via the siRNA approach mimics the inhibitory effects of zileuton and confirms the roles of ALOX5 in cervical cancer. CONCLUSIONS Our work demonstrates that the ALOX5-5-HETE axis is activated in cervical cancer, with important roles in growth and survival, and this can be therapeutically targeted by zileuton. Our findings also provide preclinical evidence to assess the efficacy of zileuton in cervical cancer in clinical settings.
Collapse
Affiliation(s)
- Liling Li
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Yifang Xiao
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Zhengzheng Xu
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Shaoshuai Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Rd 1095, Qiaokou District, Wuhan, 430030, China.
| |
Collapse
|
12
|
Alvarez MDL, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol 2021; 192:114732. [PMID: 34411565 DOI: 10.1016/j.bcp.2021.114732] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Eicosanoids are lipid signaling molecules derived from the oxidation of ω-6 fatty acids, usually arachidonic acid. There are three major pathways, including the cyclooxygenase (COX), lipoxygenase (LOX), and P450 cytochrome epoxygenase (CYP) pathway. Prostanoids, which include prostaglandins (PG) and thromboxanes (Tx), are formed via the COX pathway, leukotrienes (LT) and lipoxins (LX) by the action of 5-LOX, and hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by CYP. Although eicosanoids are usually associated with pro-inflammatory responses, non-classic eicosanoids, as LX, have anti-inflammatory and pro-resolving properties. Eicosanoids like PGE2, LTB4 and EETs have been involved in promoting liver regeneration after partial hepatectomy. PGE2 and LTB4 have also been reported to participate in the regenerative phase after ischemia and reperfusion (I/R), while cysteinyl leukotrienes (Cys-LT) contribute to the inflammatory process associated with I/R and are also involved in liver fibrosis and cirrhosis. However, LX, another product of 5-LOX, have the opposite effect, acting as pro-resolving mediators in these pathologies. In liver cancer, most studies show that eicosanoids, with the exception of LX, promote the proliferation of hepatocellular carcinoma cells and favor metastasis. This review summarizes the synthesis of different eicosanoids in the liver and discusses key findings from basic research linking eicosanoids to liver repair, regeneration and cancer and the impact of targeting eicosanoid cascade. In addition, studies in patients are presented that explore the potential use of eicosanoids as biomarkers and show correlations between eicosanoid production and the course and prognosis of liver disease.
Collapse
Affiliation(s)
- María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
13
|
Abdelhady SA, Ali MA, Al-Shafie TA, Abdelmawgoud EM, Yacout DM, El-Mas MM. Montelukast potentiates the antiinflammatory effect of NSAIDs in the rat paw formalin model and simultaneously minimizes the risk of gastric damage. Inflamm Res 2021; 70:981-992. [PMID: 34382102 DOI: 10.1007/s00011-021-01492-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE AND DESIGN Montelukast, a cysteinyl leukotriene receptor antagonist, exhibits antiinflammatory action. We tested whether exposure to montelukast plus nonsteroidal antiinflammatory drugs (NSAIDs) elicits better control of paw inflammation in the rat formalin test and improves associated gastric damage. MATERIALS A total of 46 adult male rats were used in the study. TREATMENTS We evaluated separate and combined effects of montelukast (20 mg/kg), celecoxib (COX2 inhibitor, 10 mg/kg), and diclofenac (nonselective COX1/COX2 inhibitor, 10 mg/kg) on paw and gastric damage in the rat formalin test. RESULTS Individual pretreatments of rats with montelukast, diclofenac, or celecoxib partly reduced formalin-induced increases in (i) paw edema, fibrosis, and inflammatory cells, (iii) serum interleukin-6 (IL-6) and leukotrienes (LTB4 and LTD4), and (iv) paw expressions of inducible nitric oxide synthase (iNOS) and COX2. These effects were accentuated in rats treated with montelukast plus diclofenac or montelukast plus celecoxib. Alternatively, montelukast or celecoxib, but not diclofenac, alleviated formalin-evoked gastric damage and increments in tumor necrosis factor-α and decrements in prostaglandin-E2. These advantageous gastric influences were potentiated in rats treated with montelukast plus celecoxib. CONCLUSIONS While montelukast equally enhances antiinflammatory action of diclofenac or celecoxib via downregulating iNOS/COX2/LTs/IL-6 signaling, its gastroprotective action is preferentially potentiated by celecoxib.
Collapse
Affiliation(s)
- Sherien A Abdelhady
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Ali
- Faculty of Pharmacy, Department of Pharmacology and Therapeutics, Pharos University in Alexandria, Alexandria, Egypt
| | - Tamer A Al-Shafie
- Faculty of Dentistry, Department of Basic Sciences, Pharos University in Alexandria, Alexandria, Egypt
| | - Ebtsam M Abdelmawgoud
- Faculty of Dentistry, Department of Basic Sciences, Pharos University in Alexandria, Alexandria, Egypt
| | - Dalia M Yacout
- Faculty of Medicine, Department of Clinical Pharmacology, Alexandria University, Alexandria, Egypt
| | - Mahmoud M El-Mas
- Faculty of Pharmacy, Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt. .,Faculty of Medicine, Department of Pharmacology and Toxicology, Kuwait University, Safat, PO Box 24923, 13110, Kuwait City, Kuwait.
| |
Collapse
|
14
|
Tang J, Zhang C, Lin J, Duan P, Long J, Zhu H. ALOX5-5-HETE promotes gastric cancer growth and alleviates chemotherapy toxicity via MEK/ERK activation. Cancer Med 2021; 10:5246-5255. [PMID: 34121352 PMCID: PMC8335819 DOI: 10.1002/cam4.4066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies highlight the regulatory role of arachidonate lipoxygenase5 (Alox5) and its metabolite 5‐hydroxyeicosatetraenoic acid (5‐HETE) in cancer tumorigenesis and progression. In this study, we analyzed the expression, biological function and the downstream signaling of Alox5 in gastric cancer. Methods Alox5 protein levels were measured using IHC and ELISA. Growth, migration and survival assays were performed. Phosphorylation of molecules involved in growth and survival signaling were analyzed by WB. Analysis of variance and t‐test were used for statistic analysis. Results Alox5 and 5‐HETE levels were upregulated in gastric cancer patients. ALOX5 overexpression or 5‐HETE addition activates gastric cancer cells and reduces chemotherapy’s efficacy. In contrast, ALOX5 inhibition via genetic and pharmacological approaches suppresses gastric cancer cells and enhances chemotherapy’s efficacy. In addition, Alox5 inhibition led to suppression of ERK‐mediated signaling pathways whereas ALOX5‐5‐HETE activates ERK‐mediated signaling in gastric cancer cells. Conclusions Our work demonstrates the critical role of ALOX5‐5‐HETE in gastric cancer and provides pre‐clinical evidence to initialize clinical trial using zileuton in combination with chemotherapy for treating gastric cancer.
Collapse
Affiliation(s)
- Jianjun Tang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Chuang Zhang
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jingjing Lin
- Department of Blood Transfusion, Xiangyang Traditional Chinese Medicine Hospital, Xiangyang, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jian Long
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Hongyan Zhu
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
15
|
Cai Y, Liu J, Cai SK, Miao EY, Jia CQ, Fan YZ, Li YB. Eicosapentaenoic acid's metabolism of 15-LOX-1 promotes the expression of miR-101 thus inhibits Cox2 pathway in colon cancer. Onco Targets Ther 2020; 13:5605-5616. [PMID: 32606775 PMCID: PMC7305347 DOI: 10.2147/ott.s237562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Purpose It is well known that diet Eicosapentaenoic acid (EPA) is beneficial to colon cancer (CC). However, the underlying molecular mechanisms of EPA-relating miRNAs on genesis and development of this area is still unclear. Materials and Methods This study tries to find the function and specific role of EPA in CC through quantitative PCR (qPCR), Western blotting, immunofluorescence (IF), mass spectrometry, and immunohistochemistry (IHC) assays. By these methods, the enrichment of 15-LOX-1 metabolites of EPA, the expression of miR-101 and Cox2, and the relationship among them in CC are measured. Results The quantity of miR-101 was obviously suppressed in CC tissues and SW480 cells. After application of miR-101 mimics in CC cell lines, the Cox2 expression was inhibited too. Next, we confirmed that EPA could increase the expression of miR-101 induced by 15-LOX-1. Finally, we tested whether EPA functions as a regulator of miR-101 via the production of resolvin E3. Conclusion Our data demonstrate that the EPA–15-LOX-1–miR-101-Cox2 signaling pathway owns a crucial position in the pathogenesis and development of diet-related CC. These findings exert exciting meanings for presenting new therapeutic angles in CC.
Collapse
Affiliation(s)
- Yi Cai
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jie Liu
- Department of Pathology, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shao-Kang Cai
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Er-Ya Miao
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cheng-Qian Jia
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yong-Zhi Fan
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ying-Bo Li
- Department of Pain Management, The Center Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
Voelkel NF, Peters-Golden M. A new treatment for severe pulmonary arterial hypertension based on an old idea: inhibition of 5-lipoxygenase. Pulm Circ 2020; 10:2045894019882635. [PMID: 32257113 PMCID: PMC7103594 DOI: 10.1177/2045894019882635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
It has been generally accepted that severe forms of pulmonary arterial hypertension are associated with inflammation. Plasma levels in patients with severe pulmonary arterial hypertension show elevated levels of interleukins and mediators of inflammation and histologically the diseased small pulmonary arterioles show infiltrates of inflammatory and immune cells. Here, we review the literature that connects pulmonary hypertension with the arachidonic acid/5-lipoxygenase-derived leukotriens. This mostly preclinical background data together with the availability of 5-lipoxygenase inhibitors and leukotriene receptor blockers provide the rationale for testing the hypothesis that 5-lipoxygenase products contribute to the pathobiology of severe pulmonary arterial hypertension in a subgroup of patients.
Collapse
Affiliation(s)
- Norbert F. Voelkel
- Department of Pulmonary Medicine,
University of Amsterdam Medical Centers, Amsterdam, the Netherlands
| | - Marc Peters-Golden
- Pulmonary and Critical Care Medicine
Division,
University
of Michigan Medical School, Ann Arbor, MI,
USA
| |
Collapse
|
17
|
Zileuton, a 5-Lipoxygenase Inhibitor, Exerts Anti-Angiogenic Effect by Inducing Apoptosis of HUVEC via BK Channel Activation. Cells 2019; 8:cells8101182. [PMID: 31575085 PMCID: PMC6829222 DOI: 10.3390/cells8101182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023] Open
Abstract
The arachidonic acid metabolism through 5-lipoxygenase (5-LO) pathways is involved in modulating both tumorigenesis and angiogenesis. Although anti-carcinogenic activities of certain 5-LO inhibitors have been reported, the role of zileuton, a well known 5-LO inhibitor, on the endothelial cell proliferation and angiogenesis has not been fully elucidated. Here, we report that zileuton has an anti-angiogenic effect, and the underlying mechanisms involved activation of the large-conductance Ca2+-activated K+ (BK) channel. Our results show that zileuton significantly prevented vascular endothelial growth factor (VEGF)-induced proliferation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as in vivo. However, such anti-angiogenic effect of zileuton was abolished by iberiotoxin (IBTX), a BK channel blocker, suggesting zileuton-induced activation of BK channel was critical for the observed anti-angiogenic effect of zileuton. Furthermore, the anti-angiogenic effect of zileuton was, at least, due to the activation of pro-apoptotic signaling cascades which was also abolished by IBTX. Additionally, zileuton suppressed the expression of VCAM-1, ICAM-1, ETS related gene (Erg) and the production of nitric oxide (NO). Taken together, our results show that zileuton prevents angiogenesis by activating the BK channel dependent-apoptotic pathway, thus highlighting its therapeutic capacity in angiogenesis-related diseases, such as cancer.
Collapse
|